Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 53(4): 2211-2224, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34606469

RESUMO

Task allocation is a crucial issue of mobile crowdsensing. The existing crowdsensing systems normally select the optimal participants giving no consideration to the sudden departure of mobile users, which significantly affects the sensing quality of tasks with a long sensing period. Furthermore, the ability of a mobile user to collect high-precision data is commonly treated as the same for different types of tasks, causing the unqualified data for some tasks provided by a competitive user. To address the issue, a dynamic task allocation model of crowdsensing is constructed by considering mobile user availability and tasks changing over time. Moreover, a novel indicator for comprehensively evaluating the sensing ability of mobile users collecting high-quality data for different types of tasks at the target area is proposed. A new Q -learning-based hyperheuristic evolutionary algorithm is suggested to deal with the problem in a self-learning way. Specifically, a memory-based initialization strategy is developed to seed a promising population by reusing participants who are capable of completing a particular task with high quality in the historical optima. In addition, taking both sensing ability and cost of a mobile user into account, a novel comprehensive strength-based neighborhood search is introduced as a low-level heuristic (LLH) to select a substitute for a costly participant. Finally, based on a new definition of the state, a Q -learning-based high-level strategy is designed to find a suitable LLH for each state. Empirical results of 30 static and 20 dynamic experiments expose that this hyperheuristic achieves superior performance compared to other state-of-the-art algorithms.

2.
Healthcare (Basel) ; 10(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36141391

RESUMO

In order to alleviate bottlenecks such as the lack of professional teachers, inattention during training processes, and low effectiveness in concentration training, we have proposed an immersive human-robot interactive (HRI) game framework based on deep learning for children's concentration training and demonstrated its use through human-robot interactive games based on gesture recognition. The HRI game framework includes four functional modules: video data acquisition, image recognition modeling, a deep learning algorithm (YOLOv5), and information feedback. First, we built a gesture recognition model containing 10,000 pictures of children's gestures, using the YOLOv5 algorithm. The average accuracy in recognition trainingwas 98.7%. Second, we recruited 120 children with attention deficits (aged from 9 to 12 years) to play the HRI games, including 60 girls and 60 boys. In the HRI game experiment, we obtained 8640 sample data, which were normalized and processed.According to the results, we found that the girls had better visual short-term memory and a shorter response time than boys. The research results showed that HRI games had a high efficacy, convenience, and full freedom, making them appropriate for children's concentration training.

4.
IEEE Trans Cybern ; 52(9): 9573-9586, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33729976

RESUMO

The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particle swarm optimization (PSO) (HFS-C-P) to tackle the above two problems at the same time. To this end, three kinds of FS methods are effectively integrated into the proposed algorithm based on their respective advantages. In the first and second phases, a filter FS method and a feature clustering-based method with low computational cost are designed to reduce the search space used by the third phase. After that, the third phase applies oneself to finding an optimal feature subset by using an evolutionary algorithm with the global searchability. Moreover, a symmetric uncertainty-based feature deletion method, a fast correlation-guided feature clustering strategy, and an improved integer PSO are developed to improve the performance of the three phases, respectively. Finally, the proposed algorithm is validated on 18 publicly available real-world datasets in comparison with nine FS algorithms. Experimental results show that the proposed algorithm can obtain a good feature subset with the lowest computational cost.

6.
Materials (Basel) ; 14(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34501205

RESUMO

The popularity of micro-machining is rapidly increasing due to the growing demands for miniature products. Among different micro-machining approaches, micro-turning and micro-milling are widely used in the manufacturing industry. The various cutting parameters of micro-turning and micro-milling has a significant effect on the machining performance. Thus, it is essential that the cutting parameters are optimized to obtain the most from the machining process. However, it is often seen that many machining objectives have conflicting parameter settings. For example, generally, a high material removal rate (MRR) is accompanied by high surface roughness (SR). In this paper, metaheuristic multi-objective optimization algorithms are utilized to generate Pareto optimal solutions for micro-turning and micro-milling applications. A comparative study is carried out to assess the performance of non-dominated sorting genetic algorithm II (NSGA-II), multi-objective ant lion optimization (MOALO) and multi-objective dragonfly optimization (MODA) in micro-machining applications. The complex proportional assessment (COPRAS) method is used to compare the NSGA-II, MOALO and MODA generated Pareto solutions.

7.
Healthcare (Basel) ; 9(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34356271

RESUMO

The use of humanoid robots within a therapeutic role, that is, helping individuals with social disorders, is an emerging field, but it remains unexplored in terms of concentration training. To seamlessly integrate humanoid robots into concentration games, an investigation into the impacts of human robot interactive proxemics on concentration-training games is particularly important. In the case of an epidemic diffusion especially-for example, during the COVID-19 pandemic-HRI games may help in the therapeutic phase, significantly reducing the risk of contagion. In this paper, concentration games were designed by action imitation involving 120 participants to verify the hypothesis. Action-imitation accuracy, the assessment of emotional expression, and a questionnaire were compared with analysis of variance (ANOVA). Experimental results showed that a 2 m distance and left-front orientation for a human and a robot are optimal for human robot interactive concentration training. In addition, females worked better than males did in HRI imitation games. This work supports some valuable suggestions for the development of HRI concentration-training technology, involving the designs of friendlier and more useful robots, and HRI game scenarios.

8.
Materials (Basel) ; 14(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203794

RESUMO

High-fidelity structural analysis using numerical techniques, such as finite element method (FEM), has become an essential step in design of laminated composite structures. Despite its high accuracy, the computational intensiveness of FEM is its serious drawback. Once trained properly, the metamodels developed with even a small training set of FEM data can be employed to replace the original FEM model. In this paper, an attempt is put forward to investigate the utility of radial basis function (RBF) metamodels in the predictive modelling of laminated composites. The effectiveness of various RBF basis functions is assessed. The role of problem dimensionality on the RBF metamodels is studied while considering a low-dimensional (2-variable) and a high-dimensional (16-variable) problem. The effect of uniformity of training sample points on the performance of RBF metamodels is also explored while considering three different sampling methods, i.e., random sampling, Latin hypercube sampling and Hammersley sampling. It is observed that relying only on the performance metrics, such as cross-validation error that essentially reuses training samples to assess the performance of the metamodels, may lead to ill-informed decisions. The performance of metamodels should also be assessed based on independent test data. It is further revealed that uniformity in training samples would lead towards better trained metamodels.

9.
PLoS One ; 15(9): e0239003, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915903

RESUMO

This research mainly aims to develop a generalized cure rate model, estimate the proportion of cured patients and their survival rate, and identify the risk factors associated with infectious diseases. The generalized cure rate model is based on bounded cumulative hazard function, which is a non-mixture model, and is developed using a two-parameter Weibull distribution as the baseline distribution, to estimate the cure rate using maximum likelihood method and real data with R and STATA software. The results showed that the cure rate of tuberculosis (TB) patients was 26.3%, which was higher than that of TB patients coinfected with human immunodeficiency virus (HIV; 23.1%). The non-parametric median survival time of TB patients was 51 months, while that of TB patients co-infected with HIV was 33 months. Moreover, no risk factors were associated with TB patients co-infected with HIV, while age was a significant risk factor for TB patients among the suspected risk factors considered. Furthermore, the bounded cumulative hazard function was extended to accommodate infectious diseases with co-infections by deriving an appropriate probability density function, determining the distribution, and using real data. Governments and related health authorities are also encouraged to take appropriate actions to combat infectious diseases with possible co-infections.


Assuntos
Doenças Transmissíveis/terapia , Modelos Biológicos , Coinfecção/mortalidade , Coinfecção/terapia , Controle de Doenças Transmissíveis , Doenças Transmissíveis/mortalidade , Feminino , Infecções por HIV/complicações , Infecções por HIV/mortalidade , Infecções por HIV/terapia , Humanos , Estimativa de Kaplan-Meier , Funções Verossimilhança , Masculino , Nigéria/epidemiologia , Modelos de Riscos Proporcionais , Fatores de Risco , Estatísticas não Paramétricas , Tuberculose Pulmonar/complicações , Tuberculose Pulmonar/mortalidade , Tuberculose Pulmonar/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...