Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World Neurosurg ; 181: e252-e260, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37832640

RESUMO

OBJECTIVE: Treating scalp defects after revascularization surgery is difficult because the scalp microcirculation is severely compromised. We aimed to review the clinical effects of using rotational flaps in scalp defect reconstruction and explore risk factors for wound-related complications (WRC) after reconstruction surgery. METHODS: We retrospectively identified patients with scalp defects after combined revascularization surgery who were surgically treated with rotational flap reconstruction at our institution between January 2018 and December 2022. We analyzed treatment results in different surgical technique and revascularization strategy cohorts, including direct bypass superficial temporal artery branch selection, indirect bypass types, and skin incisions. RESULTS: Eleven patients were included. The superficial temporal artery parietal branch was selected for direct bypass surgery in 10 (90.9%) patients, 4 (40%) of whom had WRC after flap reconstruction. Five types of indirect bypass surgeries were performed; three patients treated by encephalo-duro-myo-arterio-perio-synangiosis and 1 patient treated by encephalo-duro-myo-perio-synangiosis had WRC after flap reconstruction. Question mark (n = 6, 54.5%), curved (n = 4, 36.65%), and Y-shaped (n = 1, 9.1%) incisions were used; in the first three incision cohorts, 2 patients in each cohort had WRC after flap reconstruction. CONCLUSIONS: Patients had the following commonalities that may be risk factors for WRC after flap reconstruction: 1) wounds with nonviable bone exposure after revascularization surgery; 2) three or more tissues used as donor tissues and donor tissues containing the periosteum; and 3) thin scalp around the defect.


Assuntos
Revascularização Cerebral , Doença de Moyamoya , Ferida Cirúrgica , Humanos , Doença de Moyamoya/cirurgia , Doença de Moyamoya/etiologia , Couro Cabeludo/cirurgia , Estudos Retrospectivos , Revascularização Cerebral/métodos , Artéria Cerebral Média/cirurgia
2.
Chemistry ; 29(71): e202302703, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857570

RESUMO

Defects present on the top surface of perovskite films have a pronounced detrimental impact on the photovoltaic performance and stability of perovskite solar cells (PSCs). Consequently, the development of effective defect passivation strategies has become key in enhancing both the power conversion efficiency (PCE) and stability of PSCs. In this study, a small molecule material, 4-Aminophthalonitrile (4-APN), was introduced as a means to mitigate surface defects within perovskite films. Obviously, 4-APN effectively passivates the defects at grain boundaries by combining cyano groups (-C≡N) with Pb2+ , significantly reducing the density of defect states, inhibiting non-radiative recombination at the interface, and promoting the charge transfer efficiency from the perovskite layer to the hole transport layer. The 4-APN modification led to a significant upswing in the PCE, while concurrently bolstering the overall device stability. Importantly, the devices on 4-APN as passivation additive exhibited negligible performance degradation aging for 1200 h.

3.
J Phys Chem Lett ; 14(44): 9951-9959, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37905503

RESUMO

The utilization of the sol-gel method for fabricating planar SnO2 as the electron transport layer (ETL) induces numerous defects on the SnO2 layer surface and perovskite film bottom, causing considerable deterioration of the device performance. Conventional inorganic salt-doped SnO2 precursor solutions used for passivation may cause incomplete substrate coverage due to the presence of inorganic salt crystals, further degrading the device performance. Here, a substrate modification approach involving the pretreatment of a fluorine-doped SnO2 (FTO) substrate with NH4PF6 is proposed. The interaction between PF6- ions and the FTO substrate enhances SnO2 film quality; excess PF6- ions decrease the number of defects on the film surface. NH4+ ions react with an -OH stabilizing agent in the SnO2 solution and are eliminated during annealing. The combined effects suppress nonradiative recombination and ion migration at the ETL-perovskite interface. The corresponding high-quality perovskite solar cells (PSCs) exhibit a fill factor of ∼0.825; PSC efficiency increases from 19.59% to 22.32%.

4.
Exp Ther Med ; 26(1): 359, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37324510

RESUMO

CX3C chemokine ligand 1 (CX3CL1) belongs to the CX3C chemokine family and is involved in various disease processes. However, its role in intervertebral disc degeneration (IDD) remains to be elucidated. In the present study, western blotting, reverse transcription-quantitative PCR and ELISA assays were used to assess target gene expression. In addition, immunofluorescence and TUNEL staining were used to assess macrophage infiltration, monocyte migration and apoptosis. The present study aimed to reveal if and how CX3CL1 regulates IDD progression by exploring its effect on macrophage polarization and apoptosis of human nucleus pulposus cells (HNPCs). The data showed that CX3CL1 bound to CX3C motif chemokine receptor 1 (CX3CR1) promoted the M2 phenotype polarization via JAK2/STAT3 signaling, followed by increasing the secretion of anti-inflammatory cytokines from HNPCs. In addition, HNPC-derived CX3CL1 promoted M2 macrophage-derived C-C motif chemokine ligand 17 release thereby reducing the apoptosis of HNPCs. In clinic, the reduction of mRNA and protein levels CX3CL1 in degenerative nucleus pulposus tissues (NPs) was measured. Increased M1 macrophages and pro-inflammatory cytokines were found in NPs of IDD patients with low CX3CL1 expression. Collectively, these findings suggested that the CX3CL1/CX3CR1 axis alleviates IDD by reducing inflammation and apoptosis of HNPCs via macrophages. Therefore, targeting CX3CL1/CX3CR1 axis is expected to produce a new therapeutic approach for IDD.

5.
Angew Chem Int Ed Engl ; 62(31): e202304411, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37269185

RESUMO

The stable cycling of Mg-metal anodes is limited by several problems, including sluggish electrochemical kinetics and passivation at the Mg surface. In this study, we present a high-entropy electrolyte composed of lithium triflate (LiOTf) and trimethyl phosphate (TMP) co-added to magnesium bis(trifluoromethane sulfonyl)imide (Mg(TFSI)2 /1,2-dimethoxyethane (DME) to significantly improve the electrochemical performance of Mg-metal anodes. The as-formed high-entropy Mg2+ -2DME-OTf- -Li+ -DME-TMP solvation structure effectively reduced the Mg2+ -DME interaction in comparison with that observed in traditional Mg(TFSI)2 /DME electrolytes, thereby preventing the formation of insulating components on the Mg-metal anode and promoting its electrochemical kinetics and cycling stability. Comprehensive characterization revealed that the high-entropy solvation structure brought OTf- and TMP to the surface of the Mg-metal anode and promoted the formation of a Mg3 (PO4 )2 -rich interfacial layer, which is beneficial for enhancing Mg2+ conductivity. Consequently, the Mg-metal anode achieved excellent reversibility with a high Coulombic efficiency of 98 % and low voltage hysteresis. This study provides new insights into the design of electrolytes for Mg-metal batteries.

6.
Adv Mater ; 35(39): e2303654, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37314337

RESUMO

As an energy-saving and green method, solar-driven dry reforming of methane (DRM) is expected to introduce new activation processes and prevent sintering and coking of the catalysts. However, it still lacks an efficient way to coordinate the regulation of activation of reactants and lattice oxygen migration. In this study, Rh/LaNiO3 is designed as a highly efficient photothermal catalyst for solar-driven DRM, which performs production rates of 452.3 mmol h-1  gRh -1 for H2 and 527.6 mmol h-1  gRh -1 for CO2 under a light intensity of 1.5 W cm-2 , with an excellent stability. Moreover, a remarkable light-to-chemical energy efficiency (LTCEE) of 10.72% is achieved under a light intensity of 3.5 W cm-2 . The characterizations of surface electronic and chemical properties and theoretical analysis demonstrate that strong adsorption for CH4 and CO2 , light-induced metal-to-metal charge transfer (MMCT) process and high oxygen mobility together bring Rh/LaNiO3 excellent performance for solar-driven DRM.

7.
Exp Biol Med (Maywood) ; 248(11): 922-935, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37211747

RESUMO

Sepsis is characterized by uncontrolled inflammatory response and altered polarization of macrophages at the early phase. Akt is known to drive macrophage inflammatory response. However, how macrophage inflammatory response is fine-tuned by Akt is poorly understood. Here, we found that Lys14 and Lys20 of Akt is deacetylated by the histone deacetylase SIRT1 during macrophage activation to suppress macrophages inflammatory response. Mechanistically, SIRT1 promotes Akt deacetylation to inhibit the activation of NF-κB and pro-inflammatory cytokines. Loss of SIRT1 facilitates Akt acetylation and thus promotes inflammatory cytokines in mouse macrophages, potentially worsen the progression of sepsis in mice. By contrast, the upregulation of SIRT1 in macrophages further contributes to the inhibition of pro-inflammatory cytokines via Akt activation in sepsis. Taken together, our findings establish Akt deacetylation as an essential negative regulatory mechanism that curtails M1 polarization.


Assuntos
Sepse , Sirtuína 1 , Animais , Camundongos , Citocinas , Inflamação , Macrófagos , NF-kappa B , Proteínas Proto-Oncogênicas c-akt
8.
Angew Chem Int Ed Engl ; 62(28): e202303135, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37026503

RESUMO

Photo-assisted reverse water gas shift (RWGS) reaction is regarded green and promising in controlling the reaction gas ratio in Fischer Tropsch synthesis. But it is inclined to produce more byproducts in high H2 concentration condition. Herein, LaInO3 loaded with Ni-nanoparticles (Ni NPs) was designed to obtain an efficient photothermal RWGS reaction rate, where LaInO3 was enriched with oxygen vacancies to roundly adsorbing CO2 and the strong interaction with Ni NPs endowed the catalysts with powerful H2 activity. The optimized catalyst performed a large CO yield rate (1314 mmol gNi -1 h-1 ) and ≈100 % selectivity. In situ characterizations demonstrated a COOH* pathway of the reaction and photoinduced charge transfer process for reducing the RWGS reaction active energy. Our work provides valuable insights on the construction of catalysts concerning products selectivity and photoelectronic activating mechanism on CO2 hydrogenation.

9.
Bioact Mater ; 26: 323-336, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36950152

RESUMO

Chronic diabetic wounds remain a globally recognized clinical challenge. They occur due to high concentrations of reactive oxygen species and vascular function disorders. A promising strategy for diabetic wound healing is the delivery of exosomes, comprising bioactive dressings. Metformin activates the vascular endothelial growth factor pathway, thereby improving angiogenesis in hyperglycemic states. However, multifunctional hydrogels loaded with drugs and bioactive substances synergistically promote wound repair has been rarely reported, and the mechanism of their combinatorial effect of exosome and metformin in wound healing remains unclear. Here, we engineered dual-loaded hydrogels possessing tissue adhesive, antioxidant, self-healing and electrical conductivity properties, wherein 4-armed SH-PEG cross-links with Ag+, which minimizes damage to the loaded goods and investigated their mechanism of promotion effect for wound repair. Multiwalled carbon nanotubes exhibiting good conductivity were also incorporated into the hydrogels to generate hydrogen bonds with the thiol group, creating a stable three-dimensional structure for exosome and metformin loading. The diabetic wound model of the present study suggests that the PEG/Ag/CNT-M + E hydrogel promotes wound healing by triggering cell proliferation and angiogenesis and relieving peritraumatic inflammation and vascular injury. The mechanism of the dual-loaded hydrogel involves reducing the level of reactive oxygen species by interfering with mitochondrial fission, thereby protecting F-actin homeostasis and alleviating microvascular dysfunction. Hence, we propose a drug-bioactive substance combination therapy and provide a potential mechanism for developing vascular function-associated strategies for treating chronic diabetic wounds.

10.
Nurs Open ; 10(5): 2960-2970, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36503181

RESUMO

AIM: A knowledge, attitude and practice questionnaire on urine leakage (UL) with an indwelling urethral catheter (IUC) was developed for nurses in China and validated. DESIGN: Observational study. METHODS: A systematic literature review, the Delphi method and focus group evaluation were used to develop the questionnaire, which was administered to 304 registered nurses at two hospitals in Guangdong, China. The validity and reliability of the questionnaire were assessed. RESULTS: The 27-item questionnaire had four dimensions: knowledge I (aetiology), knowledge II (prevention and treatment), attitude and practice. The questionnaire showed excellent content validity and reliability. Four factors accounted for 70.526% of the variance. The data were well-fitted to the four-factor construct model. The questionnaire can be used to measure the knowledge of UL with an IUC among nurses in China, along with related attitudes and practices. This can improve nursing care of patients with IUCs. No patient or public contribution.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Cateteres Urinários , Humanos , Reprodutibilidade dos Testes , Cateteres de Demora , Inquéritos e Questionários , Estudos Observacionais como Assunto
11.
Fundam Res ; 3(1): 57-62, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933574

RESUMO

Optically levitated oscillators in high vacuum have excellent environmental isolation and low mass compared with conventional solid-state sensors, which makes them suitable for ultrasensitive force detection. The force resolution usually scales with the measurement bandwidth, which represents the ultimate detection capability of the system under ideal conditions if sufficient time is provided for measurement. However, considering the stability of a real system, a method based on the Allan variance is more reliable to evaluate the actual force detection performance. In this study, a levitated optomechanical system with a force detection sensitivity of 6.33 ± 1.62 zN/Hz1/2 was demonstrated. And for the first time, the Allan variance was introduced to evaluate the system stability due to the force sensitivity fluctuations. The force detection resolution of 166.40 ± 55.48 yN was reached at the optimal measurement time of 2751 s. The system demonstrated in this work has the best force detection performance in both sensitivity and resolution that have been reported so far for optically levitated particles. The reported high-sensitivity force detection system is an excellent candidate for the exploration of new physics such as fifth force searching, high-frequency gravitational waves detection, dark matter research and so on.

12.
iScience ; 25(10): 105236, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36274941

RESUMO

The clinical correlation between adiponectin (APN) signal and hypertrophic scar (HS) remains unclear. Here, we found significantly reduced expression of APN receptors (AdipoR1/2) in HS tissues and derived fibroblasts (HFs), suggesting that HS formation may be associated with APN/AdipoR1/2 decline. RNA sequencing and RT-PCR validation revealed that APN significantly elevated the expression of SIRT1. Both in vitro and in vivo experiments confirmed that SIRT1 plays important role in APN inhibiting the fibrotic phenotype transformation and proliferation of scar fibroblasts and improving skin fibrosis. Mechanistically, SIRT1 inhibited the acetylation of C/EBPß K39, histone H3K27, and H3K9, resulting in impaired transcription activity of C/EBPß and compact chromatin conformation, thus preventing C/EBPß from activating the transcription of YAP. Moreover, we found that YAP was critical for the transcriptional regulation of CTGF, CCND1, and CCNE1 by TEAD4. In conclusion, our study revealed the role of APN in antagonizing HS fibrosis by regulating the SIRT1/C/EBPß/YAP pathway.

13.
Micromachines (Basel) ; 13(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36296046

RESUMO

Existing preparation methods for microdroplets usually require offline measurements to characterize single microdroplets. Here, we report an optical method used to facilitate the controllable formation and real-time characterization of single microdroplets. The optical tweezer technique was used to capture and form a microdroplet at the center of the trap. The controllable growth and real-time characterization of the microdroplet was realized, respectively, by adjusting experimental parameters and by resolving the Raman spectra by fitting Mie scattering to the spike positions of the spectra during the controllable growth of microdroplets. The proposed method can be potentially applied in optical microlenses and virus detection.

14.
Front Endocrinol (Lausanne) ; 13: 982297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36303873

RESUMO

Gonadotropin-releasing hormone (GnRH), as a vital hypothalamic neuropeptide, was a key regulator for pituitary luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the vertebrate. However, little is known about the other pituitary actions of GnRH in teleost. In the present study, two GnRH variants (namely, GnRH2 and GnRH3) and four GnRH receptors (namely, GnRHR1, GnRHR2, GnRHR3, and GnRHR4) had been isolated from grass carp. Tissue distribution displayed that GnRHR4 was more highly detected in the pituitary than the other three GnRHRs. Interestingly, ligand-receptor selectivity showed that GnRHR4 displayed a similar and high binding affinity for grass carp GnRH2 and GnRH3. Using primary culture grass carp pituitary cells as model, we found that both GnRH2 and GnRH3 could not only significantly induce pituitary reproductive hormone gene (GtHα, LHß, FSHß, INHBa, secretogranin-2) mRNA expression mediated by AC/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK-II pathways but also reduce dopamine receptor 2 (DRD2) mRNA expression via the Ca2+/CaM/CaMK-II pathway. Interestingly, GnRH2 and GnRH3 could also stimulate anorexigenic peptide (POMCb, CART2, UTS1, NMBa, and NMBb) mRNA expression via AC/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK-II pathways in grass carp pituitary cells. In addition, food intake could significantly induce brain GnRH2 mRNA expression. These results indicated that GnRH should be the coupling factor to integrate the feeding metabolism and reproduction in teleost.


Assuntos
Carpas , Hormônio Liberador de Gonadotropina , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Hipófise/metabolismo , Reprodução/fisiologia , Hipotálamo/metabolismo , Hormônios Hipofisários , Carpas/metabolismo , RNA Mensageiro/genética
15.
Cells ; 11(16)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36010644

RESUMO

Chronic wounds resulting from diabetes are a major health concern in both industrialized and developing countries, representing one of the leading causes of disability and death. This study aimed to investigate the effect of adipose mesenchymal stem cell-derived exosomes (ADSC-exos) on diabetic wounds and the mechanism underlying this effect. The results showed that ADSC-exos could improve oxidative stress and secretion of inflammatory cytokines in diabetic wounds, thereby increasing periwound vascularization and accelerating wound healing. At the cellular level, ADSC-exos reduced reactive oxygen species (ROS) generation in human umbilical vein endothelial cells (HUVECs) and improved mitochondrial function in a high-glucose environment. Moreover, the Western blot analysis showed that the high-glucose environment decreased Sirtuin 3 (SIRT3) expression, while exosome treatment increased SIRT3 expression. The activity of superoxide dismutase 2 (SOD2) was enhanced, and the level of inflammatory cytokines was decreased. Further, SIRT3 interference experiments indicated that the effects of ADSC-exos on oxidative stress and angiogenesis were partly dependent on SIRT3. After SIRT3 was inhibited, ROS production increased, while mitochondrial membrane potential and SOD2 activity decreased. These findings confirmed that ADSC-exos could improve the level of high-glucose-induced oxidative stress, promote angiogenesis, and reduce mitochondrial functional impairment and the inflammatory response by regulating SIRT3/SOD2, thus promoting diabetic wound healing.


Assuntos
Diabetes Mellitus , Exossomos , Células-Tronco Mesenquimais , Sirtuína 3 , Citocinas/metabolismo , Diabetes Mellitus/metabolismo , Exossomos/metabolismo , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/metabolismo , Superóxido Dismutase , Cicatrização
16.
Small ; 18(19): e2201716, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35419940

RESUMO

As a widely used substrate for flexible electronics, indium-tin oxide-based polymer electrodes (polymer-ITO electrodes) exhibit poorly visible light transmittance of less than 80%. The inferior transmittance for polymer-ITO electrodes severely limits the performance improvement of polymer-ITO based electronics. Here, a conceptually different approach of the double-sided antireflection coatings (DARCs) strategy is proposed to modulate both the air-polymer substrate interface and ITO-air interface refractive index gradient, to synergistically improve the transmittance of polymer-ITO electrodes. On the basis of SiO2 nanoparticles antireflection layer on polymer substrate, a polymer-metal oxide composite antireflection film is fabricated on the ITO side. Resultantly, the transmittance of ITO-based flexible electrodes is successfully improved from 76.8% to 89.8%, which is the highest transmittance among the reported ITO-based flexible electrodes. Furthermore, the photoluminescence emission intensity of luminescent materials enveloped with the DARCs electrodes increases by 74% over that with reference electrodes, demonstrating the DARCs antireflection strategy can efficiently improve the performance of flexible optoelectronic devices. With DARCs electrode, the flexible perovskite solar cells exhibit an enhanced efficiency from 18.80% to 20.85%.

17.
Res Vet Sci ; 146: 53-59, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35325756

RESUMO

Variations in Cytokine inducible SH2-containing protein (CISH) gene influence human susceptibility to common infectious diseases, but little is known about CISH in swine. The objectives of this study were to 1) determine porcine CISH (pCISH) mRNA expression level in different tissues of piglets, 2) predict putative functional genetic variations within pCISH, 3) investigate the association between a identified variation in the 3'UTR and piglets phenotype traits in Min (n = 226) and Landrace (n = 186) population, and explore the function of this variation. Results of quantitative PCR showed pCISH mRNA expressed in all the collected tissues with higher level in lung and ileum than colon (p < 0.05). In-silico analysis indicated none of the functional ns-SNPs existed in pCISH coding region. Results from the characterizing of 3'UTR presented a novel 12-bp insertion/deletion (indel) mutation. Statistical analysis demonstrated that this 12-bp indel associated with piglets diarrhea score in the Landrace population, and animals with AA genotype (12-bp insertion) presented lower diarrhea score when compared with BB (p < 0.05) or AB (p < 0.01) carriers. The in vitro study indicated that the luciferase activity of reconstruct plasmid psiCHECK-2-CISH-AA or psiCHECK-2-CISH-BB was significantly lower than the negative control (p < 0.05), and luciferase activity of psiCHECK-2-CISH-AA was higher than that of the psiCHECK-2-CISH-BB (p < 0.05). Although results herein suggested the 12-bp indel might affect Landrace piglet susceptibility to diarrhea, further association studies in more populations are needed before this preliminary finding could be used for pig breeding.


Assuntos
Diarreia , Mutação INDEL , Regiões 3' não Traduzidas/genética , Animais , Diarreia/genética , Diarreia/veterinária , Luciferases/genética , RNA Mensageiro/genética , Suínos
18.
Artigo em Inglês | MEDLINE | ID: mdl-35149343

RESUMO

Annual killifish could survive as diapaused embryos buried in soil during dry seasons. When the embryos in diapause III were incubated in water, the larvae could be hatched quickly. However, the mechanism of diapause and hatching of annual killifish was ambiguous. In the present study, Nothobranchius guentheri were used as the model to clarify the physiological mechanism of diapause and hatching of annual killifish. The results indicated that incubation with water could significantly enhance the heart rate and blood circulation of embryos. To clarify the molecular mechanism, the transcriptomic analysis was used to compare the embryos in diapause I, diapause III, and hatching period. The results showed that DNA replication-related genes, cell division cycle 45 and proliferating cell nuclear antigen were more highly expressed in diapause I compared to diapause III. In addition, the transcript levels of glucagon, glucokinase and phosphofructokinase were more abundantly detected in hatching period compared to diapause III, but insulin receptor and insulin-like growth factor-binding protein were lower. These results indicated glucose metabolism might play an important role in diapause and hatching of killifish. To further confirm this result, several reagents involved in glucose metabolism were used to incubate embryos in diapause III. The results displayed that glucose and glucagon could both shorten the hatching time of embryos. In contrast, 2-deoxy-d-glucose, metformin, and insulin could prolong the hatching time and reduce the hatching rate. The results further confirmed that glucose metabolism played an important role in the diapause and hatching of annual killifish.


Assuntos
Diapausa , Fundulidae , Adaptação Fisiológica/genética , Animais , Diapausa/fisiologia , Embrião não Mamífero/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Água/metabolismo
19.
Front Vet Sci ; 9: 1090833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733428

RESUMO

Identification of causative genes or genetic variants associated with phenotype traits benefits the genetic improvement of animals. CISH plays a role in immunity and growth, however, the upstream transcriptional factors of porcine CISH and the genetic variations in these factors remain unclear. In this study, we firstly identified the minimal core promoter of porcine CISH and confirmed the existence of STATx binding sites. Overexpression and RT-qPCR demonstrated STAT5A increased CISH transcriptional activity (P < 0.01) and mRNA expression (P < 0.01), while GATA1 inhibited CISH transcriptional activity (P < 0.01) and the following mRNA expression (P < 0.05 or P < 0.01). Then, the putative functional genetic variations of porcine STAT5A were screened and a PCR-SSCP was established for genotype g.508A>C and g.566C>T. Population genetic analysis showed the A allele frequency of g.508A>C and C allele frequency of g.566C>T was 0.61 and 0.94 in Min pigs, respectively, while these two alleles were fixed in the Landrace population. Statistical analysis showed that Min piglets with CC genotype at g.566C>T or Hap1: AC had higher 28-day body weight, 35-day body weight, and ADG than TC or Hap3: CT animals (P < 0.05, P < 0.05). Further luciferase activity assay demonstrated that the activity of g.508A>C in the C allele was lower than the A allele (P < 0.05). Collectively, the present study demonstrated that STAT5A positively regulated porcine CISH transcription, and SNP g.566C>T in the STAT5A was associated with the Min piglet growth trait.

20.
Front Physiol ; 12: 753914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34751218

RESUMO

Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a destructive mulberry pest, causing great damage to mulberry in China. Heat shock proteins (Hsps) are involved in various signal pathways and regulate lots of physiological processes in insects. The function of Hsps in G. pyloalis, however, has still received less attention. Here, we identified five Hsp genes from G. pyloalis transcriptome dataset including two Hsp70 family genes (GpHsp71.3 and GpHsp74.9) and three Hsp90 family genes (GpHsp82.4, GpHsp89, and GpHsp93.4). Quantitative Real-time PCR validation revealed that all Hsps of G. pyloalis have significant expression in pupal and diapause stage, at which the larvae arrest the development. Expressions of GpHsp71.3 and GpHsp82.4 were increased significantly after thermal treatment at 40°C, and this upregulation depended on heat treatment duration. Furthermore, silencing GpHsp82.4 by RNA interference led to a significant increase in mortality of G. pyloalis larvae under the heat stress compared to the control group. After starvation stress, the expression levels of GpHsp82.4 and GpHsp93.4 were significantly increased. At last, after being parasitized by the parasitoid wasp Aulacocentrum confusum, Hsp70 and Hsp90 genes of G. pyloalis were decreased significantly in the early stage of parasitization and this moderation was affected by time post-parasitization. This study highlights the function of G. pyloalis Hsps in response to environmental stress and provides a perspective for the control of this pest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...