Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14095, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890389

RESUMO

Lipid metabolism is an important part of the heart's energy supply. The expression pattern and molecular mechanism of lipid metabolism-related genes (LMRGs) in acute myocardial infarction (AMI) are still unclear, and the link between lipid metabolism and immunity is far from being elucidated. In this study, 23 Common differentially expressed LMRGs were discovered in the AMI-related mRNA microarray datasets GSE61144 and GSE60993. These genes were mainly related to "leukotriene production involved in inflammatory response", "lipoxygenase pathway", "metabolic pathways", and "regulation of lipolysis in adipocytes" pathways. 12 LMRGs (ACSL1, ADCY4, ALOX5, ALOX5AP, CCL5, CEBPB, CEBPD, CREB5, GAB2, PISD, RARRES3, and ZNF467) were significantly differentially expressed in the validation dataset GSE62646 with their AUC > 0.7 except for ALOX5AP (AUC = 0.699). Immune infiltration analysis and Pearson correlation analysis explored the immune characteristics of AMI, as well as the relationship between these identified LMRGs and immune response. Lastly, the up-regulation of ACSL1, ALOX5AP, CEBPB, and GAB2 was confirmed in the mouse AMI model. Taken together, LMRGs ACSL1, ALOX5AP, CEBPB, and GAB2 are significantly upregulated in AMI patients' blood, peripheral blood of AMI mice, myocardial tissue of AMI mice, and therefore might be new potential biomarkers for AMI.


Assuntos
Metabolismo dos Lipídeos , Infarto do Miocárdio , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Metabolismo dos Lipídeos/genética , Humanos , Proteínas Ativadoras de 5-Lipoxigenase/genética , Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Perfilação da Expressão Gênica , Animais , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Regulação da Expressão Gênica , Camundongos , Masculino , Coenzima A Ligases
2.
J Pharm Biomed Anal ; 246: 116204, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776584

RESUMO

Lamiophlomis Herba (LH) is a traditional Chinese and Tibetan dual-use herb with hemostatic and analgesic effects, and is widely used in the clinical treatment of traumatic bleeding and pain. In recent years, LH has been proven to treat liver fibrosis (LF), but the chemical components related to the pharmacological properties of LH in the treatment of LF are still unclear. Based on the theory of plasma pharmachemistry, the characteristic components in water extract and drug-containing plasma samples of LH were qualitatively analyzed by UPLC-Q-TOF-MS. The chemical components in plasma were screened and the targets were predicted by network pharmacology. Then, the predicted components and targets were verified in vitro by Elisa and qRT-PCR technology. Finally, the pharmacological effects of LH and its monomeric components were determined by hematoxylin-eosin staining of rat liver. A total of 50 chemical constituents were identified in LH, of which 12 were blood prototypes and 9 were metabolites. In vitro experiments showed that LH and its monomeric components luteolin, shanzhiside methyl ester, loganic acid, loganin, 8-O-acetyl shanzhiside methyl ester could increase the expression of antioxidant genes (NQO-1, HO-1) and decrease the expression of inflammatory genes (IL-6, IL-18), thereby reducing the expression of extracellular matrix-related genes and proteins (COL1A1, COL3A1, LN, α-sma, PC-III, Col-IV). In vivo experiments showed that LH could reduce the area of LF in rats in a dose-dependent manner, and shanzhiside methyl ester and 8-O-acetyl shanzhiside methyl ester may be the main components in pharmacodynamics. These effects may be mediated by LH-mediated Nrf2/NF-κB pathway. This study explored the potential pharmacodynamic components of LH in the treatment of LF, and confirmed that shanzhiside methyl ester and 8-O-acetyl shanzhiside methyl ester play a key role in the treatment of LF with LH.


Assuntos
Medicamentos de Ervas Chinesas , Cirrose Hepática , Farmacologia em Rede , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Farmacologia em Rede/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Cirrose Hepática/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Lamiaceae/química
3.
Phytomedicine ; 123: 155241, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128395

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases encountered in clinical practice. Curcumin can alleviate insulin resistance, inhibit oxidative stress response, reduce inflammation, reduce liver fat deposition, and effectively improve NAFLD through various modalities, inhibiting the progression into cirrhosis and fibrosis. PURPOSE: To explore the current status, hot spots, and developing trends of curcumin in NAFLD treatment through quantitative scientific analysis to serve as a reference for subsequent studies. STUDY DESIGN: A comprehensive analysis of the mechanism of action of curcumin in the treatment of NAFLD and methods to increase curcumin bioavailability using bibliometric analysis and literature review. METHODS: This study used VOSviewer software to analyze the literature related to curcumin treatment of NAFLD in the Web of Science (WOS) core set database. A comprehensive and in-depth review was conducted based on the results of scientific econometric research and literature review. RESULTS: The review observed that curcumin can activate various signaling pathways such as AMPK and NF-κB to inhibit oxidative stress and apoptosis, thereby reflecting its pharmacological effects: lowering lipid, anti-inflammatory, reducing insulin resistance, and anti-fibrosis. These mechanisms improve or even reverse the complex pathological features of lipid metabolism disorders associated with NAFLD. Curcumin also can potentially serve as a primary regulatory target for treating hepatic steatosis using gut microbiota. However, these pharmacological effects of curcumin were limited owing to its low bioavailability. CONCLUSION: This review discusses NAFLD treatment with curcumin, analyzes the reasons for its low bioavailability, and introduces models for studying and methods for improving curcumin bioavailability. As research on NAFLD grows, future research should capture the trend of basic research, pay attention to clinical research, and continuously explore the therapeutic potential of curcumin.


Assuntos
Curcumina , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Curcumina/metabolismo , Cirrose Hepática/metabolismo , Inflamação/tratamento farmacológico , Fígado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...