Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 69(50): 15097-15107, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34902254

RESUMO

In aphids, hormesis and symbiotic bacteria are the drivers for the development of pesticide resistance. However, the related mechanism remains unclear. Here, we evaluated the sublethal and transgenerational effects of the extensively used pyrethroid pesticide deltamethrin (DMT) on the population dynamics in Aphis gossypii and tested its influence on symbiotic bacterial communities. The leaf-dip bioassay revealed that DMT was highly toxic to A. gossypii, and at a low lethal concentration of DMT, the intrinsic (r) and finite rates of increase (λ) of the initially exposed aphids (G0) significantly decreased. Intriguingly, the r, λ, and net reproductive rate (R0) of G1 and G2 significantly increased, but the r and λ decreased in G3. The adult and total preoviposition period increased in G3 but decreased in G4. Additionally, the diversity of the bacterial community decreased, while the abundance values of Buchnera, Pseudomonadaceae, and Burkholderiaceae increased after 24 h of exposure to LC30 DMT in G0 aphids, and the latter two decreased in G1 but increased in G2. In summary, sublethal DMT has intergenerational hormesis effect on cotton aphids in G1-G2 and remarkably altered their symbiotic bacterial community and abundance. These results broaden our understanding of the relationship of hormesis and symbiotic bacteria in aphids under insecticide exposure.


Assuntos
Afídeos , Inseticidas , Piretrinas , Animais , Bactérias/genética , Inseticidas/toxicidade , Nitrilas , Piretrinas/toxicidade , Reprodução
2.
Pest Manag Sci ; 77(7): 3406-3418, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33786972

RESUMO

BACKGROUND: Aphis gossypii, a polyphagous and recurrent pest induced by pesticides, causes tremendous loss crop yields each year. Previous studies on the mechanism of pesticide-induced sublethal effects mainly focus on the gene level. The symbiotic bacteria are also important participants of this mechanism, but their roles in hormesis are still unclear. RESULTS: In this study, life table parameters and 16S rRNA sequencing were applied to evaluate the sublethal and transgenerational effects of sulfoxaflor on adult A. gossypii after 24-h LC20 (6.96 mg L-1 ) concentration exposure. The results indicated that the LC20 of sulfoxaflor significantly reduced the finite rate of increase (λ) and net reproductive rate (R0 ) of parent generation (G0), and significantly increased mean generation time (T) of G1 and G2, but not of G3 and G4. Both reproductive period and fecundity of G1 and G2 were significantly higher than those of the control. Furthermore, our sequencing data revealed that more than 95% bacterial communities were dominated by the phylum Proteobacteria, in which the maximum proportion genus was the primary symbiont Buchnera and the facultative symbiont Arsenophonus. Compared to those of the control, the abundance and composition of symbiotic bacteria of A. gossypii for three successive generations (G0-G2) were changed after G0 A. gossypii was exposed to sulfoxaflor: the diversity of the bacterial community was decreased, but the abundance of Buchnera was increased (G0), while the abundance of Arsenophonus was decreased. Contrary to G0, G1 and G2 cotton aphid exhibited an increased relative abundance of Arsenophonus in the sublethal treatment group. CONCLUSION: Taken together, our results provide an insight into the interactions among pesticide resistance, aphids, and symbionts, which will eventually help to better manage the resurgence of A. gossypii. © 2021 Society of Chemical Industry.


Assuntos
Afídeos , Animais , Afídeos/genética , Humanos , Tábuas de Vida , Piridinas , RNA Ribossômico 16S/genética , Compostos de Enxofre/toxicidade
3.
PLoS One ; 12(11): e0188477, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190301

RESUMO

Reference genes have been utilized in estimating gene expression levels using quantitative reverse transcriptase-quantitative polymerase chain reaction (qRT-PCR) analysis. Aphidius gifuensis Ashmaed is one of the most widely used biological control agents for aphids. The biological properties of this species have been studied in detail, and current investigations are focused on elucidating the regulatory mechanisms in its host However, the appropriate reference genes for target gene expression studies have not been identified. In this study, the expression profiles of 12 candidate reference genes were evaluated under different experimental conditions(development stage, sex, tissue type, diet) by using dedicated algorithms, including geNorm, Normfinder, BestKeeper, and ΔCt. In addition, RefFinder was used to rank the overall stability of the candidate genes. Finally, we recommend three optimal reference genes for the normalization of qRT-PCR data in the presence of specific variables, which include ACTB, RPL13, and PPI for different developmental stages; RPS18, ACTB, and RPL13 for sexes; RPL13, PRII3, and RPS18 in different tissue types; and RPL13, RPL27, and ACTB in diverse diets. The present study has identified optimal reference genes that could be used in estimating the expression levels of specific genes under these conditions following the Minimum Information for publication of Quantitative real-time PCR Experiments (MIQE) guidelines, which would facilitate in advancements in functional genomics research on A. gifuensis.


Assuntos
Perfilação da Expressão Gênica , Himenópteros/genética , Animais , Feminino , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Gene ; 637: 211-218, 2017 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28964897

RESUMO

Lysiphlebia japonica (Ashmead) is a predominant parasitoid of cotton-melon aphids in the fields of northern China with a proven ability to effectively control cotton aphid populations in early summer. For accurate normalization of gene expression in L. japonica using quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR), reference genes with stable gene expression patterns are essential. However, no appropriate reference genes is L. japonica have been investigated to date. In the present study, 12 selected housekeeping genes from L. japonica were cloned. We evaluated the stability of these genes under various experimental treatments by RT-qPCR using four independent (geNorm, NormFinder, BestKeeper and Delta Ct) and one comparative (RefFinder) algorithm. We identified genes showing the most stable levels of expression: DIMT, 18S rRNA, and RPL13 during different stages; AK, RPL13, and TBP among sexes; EF1A, PPI, and RPL27 in different tissues, and EF1A, RPL13, and PPI in adults fed on different diets. Moreover, the expression profile of a target gene (odorant receptor 1, OR1) studied during the developmental stages confirms the reliability of the chosen selected reference genes. This study provides for the first time a comprehensive list of suitable reference genes for gene expression studies in L. japonica and will benefit subsequent genomics and functional genomics research on this natural enemy.


Assuntos
Perfilação da Expressão Gênica/normas , Himenópteros/genética , Proteínas de Insetos/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Algoritmos , Animais , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...