Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131443, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588837

RESUMO

Facial masks have become ubiquitous in our daily life to endow skin enough moisture and activated nutrition through mask nonwovens infused with skincare ingredients. However, the active nutrients in wet masks are prone to deterioration and deactivation. Herein, a novel multifunctional nanofiber dry mask was successfully prepared using aqueous-electrospun phenolic acid grafted chitosan/collagen peptides. When used, the functional nanofibers in the mask dissolve through spraying moisture, activating active ingredients in response to water and providing in-situ free radical scavenging, moisturizing and antibacterial effects to the skin. In this work, a series of gallic acid (GA), caffeic acid (CA), and protocatechuic acid (PA) have been studied to be grafted with chitosan to improve water solubility of chitosan (CS). Also, through aqueous electrospinning of phenolic acid-grafted chitosan/collagen peptides, a one-step green multifunctional nanofiber mask was obtained. The results showed that the mask had a 12.14 % moisturizing rate and a 94.09 % activity for removing free radicals from the skin after encountering moisture. Considering its high efficiency, controllable function release, and easy processability, the nanofiber multifunctional mask may provide a competitive alternative to facial masks and promote potential value-added applications of bio-based macro-molecules.


Assuntos
Quitosana , Colágeno , Hidroxibenzoatos , Nanofibras , Quitosana/química , Hidroxibenzoatos/química , Colágeno/química , Nanofibras/química , Peptídeos/química , Água/química , Pele/efeitos dos fármacos , Solubilidade , Antibacterianos/química , Antibacterianos/farmacologia
2.
Front Cell Infect Microbiol ; 12: 1011672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483456

RESUMO

Coronavirus disease 2019 (COVID-19) is currently a severe threat to global public health, and the immune response to COVID-19 infection has been widely investigated. However, the immune status and microecological changes in the respiratory systems of patients with COVID-19 after recovery have rarely been considered. We selected 72 patients with severe COVID-19 infection, 57 recovered from COVID-19 infection, and 65 with non-COVID-19 pneumonia, for metatranscriptomic sequencing and bioinformatics analysis. Accordingly, the differentially expressed genes between the infected and other groups were enriched in the chemokine signaling pathway, NOD-like receptor signaling pathway, phagosome, TNF signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway, and C-type lectin receptor signaling pathway. We speculate that IL17RD, CD74, and TNFSF15 may serve as disease biomarkers in COVID-19. Additionally, principal coordinate analysis revealed significant differences between groups. In particular, frequent co-infections with the genera Streptococcus, Veillonella, Gemella, and Neisseria, among others, were found in COVID-19 patients. Moreover, the random forest prediction model with differential genes showed a mean area under the curve (AUC) of 0.77, and KCNK12, IL17RD, LOC100507412, PTPRT, MYO15A, MPDZ, FLRT2, SPEG, SERPINB3, and KNDC1 were identified as the most important genes distinguishing the infected group from the recovered group. Agrobacterium tumefaciens, Klebsiella michiganensis, Acinetobacter pittii, Bacillus sp. FJAT.14266, Brevundimonas naejangsanensis, Pseudopropionibacterium propionicum, Priestia megaterium, Dialister pneumosintes, Veillonella rodentium, and Pseudomonas protegens were selected as candidate microbial markers for monitoring the recovery of COVID patients. These results will facilitate the diagnosis, treatment, and prognosis of COVID patients recovering from severe illness.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral
3.
Materials (Basel) ; 15(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36295250

RESUMO

The SiCf/SiC composite manufactured by chemical vapour infiltration (CVI) is a kind of porous material. Liquid molten salt in a Molten Salt Reactor (MSR) may enter into the porous composites and affect their performance. Through the study of the internal pores in the material, the permeability behaviour of the material can be investigated, which is of great significance to the analysis of the properties of the material itself. However, there is less investigation on effects of molten salt infiltration on the internal pore structure of SiCf/SiC composites. In this paper, a molten salt infiltration experiment of 2D woven SiCf/SiC composites was implemented at 650 °C, 3 atm. SEM, CT and XRD were used to characterize it. The results indicated that the microstructure could be affected by partial molten salt infiltration and temperature change. The distribution of porosity of the composite showed an obvious transformation. The lattice spacing of SiC showed an increased tendancy of stress relaxation.

4.
Data Brief ; 21: 1963-1969, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30510984

RESUMO

Presented in this article are mechanical property and microstructural data for fluoride molten salt infiltrated graphite at high temperature. Four infiltration pressures (0 kPa, 450 kPa, 600 kPa, and 1000 kPa) and two kinds of graphite (IG-110 and NG-CT-10) were used during molten salt infiltration. After fluoride molten salt infiltration, compression testing and tension testing were performed at 700 °C to determine compressive strength, tensile strength, softening coefficient, stress-strain curve, and absorbed energy. Utilizing scanning electron microscopy (SEM) applied to fracture fragments, SEM micrographs for the fracture surface of molten salt infiltrated graphite and virgin graphite were determined.

5.
RSC Adv ; 8(59): 33927-33938, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-35548833

RESUMO

Nanopore pyrolytic graphite coatings (PyC, average pore size ∼64 nm) were prepared on graphite to inhibit liquid fluoride salt and Xe135 penetration. The samples were irradiated with 7 MeV Xe26+ to a total peak dose of 0.1, 0.5, 2.5 and 5.0 displacements per atom at room temperature to study the irradiation resistance of the PyC. The effect of irradiation on the properties of the graphite was evaluated. With the increase of irradiation dose, the surface morphology of the coatings tends to be smoother. At the total peak dose of 2.5 dpa, peeling and spalling on the surface of the samples have been identified, indicating the surface microstructure of the graphite has been damaged by Xe26+ bombardment. Raman results indicated the increase in the degree of disorder and decrease of in-plane crystallite size with the irradiation dose, and the new PyC was more sensitive to irradiation than IG-110 graphite. The nanohardness at peak dose increased with the irradiation dose, but decreased at 2.5 dpa. The results of a hardness test also show PyC has a higher irradiation sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...