Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 605: 624-636, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352443

RESUMO

A 3D α-MoO3 nanostructure for high-performance triethylamine (TEA) detection was synthesized via the facial oxidation of MoS2 nanoflowers (NFs) obtained by a hydrothermal process. The influence of the time of hydrothermal process in growing MoS2 on the morphologies of the final MoO3 obtained after calcination was investigated. As-obtained MoO3 and their precursors were systematically characterized by various techniques, such as X-ray diffraction, Raman, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and N2 adsorption-desorption isotherms. Results showed that MoO3 with a hierarchical layered nanostructure was successfully obtained. After hydrothermal treatment of the MoS2 precursor for 20 h, the typical MoO3-based sensor (called M20) exhibited a high response of 2.42 at a very low TEA concentration of only 0.1 ppm at 240 °C. The M20 sensor response to 50 ppm TEA was as high as 125 with a fast response/recovery time of 14/22 s. Moreover, the sensor had a high stability and reproducibility as well as a high selectivity against other interfering VOCs or gases. Due to the tendency of TEA to adsorb to active oxygen sites of MoO3, the enhanced sensing properties of MoO3 can be ascribed to the remarkable hierarchical structure and large surface area. MoO3 obtained after calcination of hydrothermally grown MoS2 is thus a promising sensing material for enhanced TEA gas detection.

2.
J Colloid Interface Sci ; 594: 690-701, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33780772

RESUMO

Acetone sensors with high response and excellent selectivity are of enormous demand for monitoring the diabetes. This paper has reported a novel porous 3D hierarchical Co3O4/rGO nanocomposite synthesized by a microwave-assisted method, by which Co3O4 nanoparticles are rapidly and uniformly anchored on rGO nanosheets. The phase composition, surface morphology of the Co3O4/rGO composites and the effect of rGO on their acetone-sensing performance were systematically investigated. The results show that the sample with an optimized content of rGO (Co3O4/rGO-1) achieves the highest stability and response to acetone (0.5 ~ 200 ppm) at a relatively low temperature (~160 °C). Also, the Co3O4/rGO-1 exhibits a high acetone-sensing selectivity against the gases (or vapors) of H2S, H2, CH4, HCHO, CH3OH, C3H8O and C2H5OH. The enhanced acetone-sensing performance of the Co3O4/rGO composite can be attributed to the Co3O4/rGO p-p heterojunction and the Co3+-C coupling effect between Co3O4 and rGO, improving transport of carriers. In addition, the unique 3D hierarchically porous structure and large surface areas are favorable to adsorption and desorption of gas molecules. This facile microwave-assisted method provides a charming strategy to develop smart rGO-based nanomaterials for real-time detection of harmful gases and rapid medical diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...