Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 282(39): 28557-28565, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17698846

RESUMO

Nitric-oxide synthase (NOS) catalyzes both coupled and uncoupled reactions that generate nitric oxide and reactive oxygen species. Oxygen is often the overlooked substrate, and the oxygen metabolism catalyzed by NOS has been poorly defined. In this paper we focus on the oxygen stoichiometry and effects of substrate/cofactor binding on the endothelial NOS isoform (eNOS). In the presence of both L-arginine and tetrahydrobiopterin, eNOS is highly coupled (>90%), and the measured stoichiometry of O(2)/NADPH is very close to the theoretical value. We report for the first time that the presence of L-arginine stimulates oxygen uptake by eNOS. The fact that nonhydrolyzable L-arginine analogs are not stimulatory indicates that the occurrence of the coupled reaction, rather than the accelerated uncoupled reaction, is responsible for the L-arginine-dependent stimulation. The presence of 5,6,7,8-tetrahydrobiopterin quenched the uncoupled reactions and resulted in much less reactive oxygen species formation, whereas the presence of redox-incompetent 7,8-dihydrobiopterin demonstrates little quenching effect. These results reveal different mechanisms for oxygen metabolism for eNOS as opposed to nNOS and, perhaps, partially explain their functional differences.


Assuntos
Arginina/química , Biopterinas/análogos & derivados , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico/metabolismo , Oxigênio/química , Espécies Reativas de Oxigênio/química , Animais , Arginina/metabolismo , Biopterinas/química , Biopterinas/metabolismo , Catálise , Humanos , Óxido Nítrico/química , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Nitrosaminas/química , Nitrosaminas/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
2.
J Biol Chem ; 282(11): 7921-9, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17229730

RESUMO

Nitric-oxide synthases (NOS) catalyze nitric oxide (NO) formation from the amino acid L-arginine. NOS is known to catalyze more than one reaction: the NO-producing reaction is considered to be the coupled reaction, and the uncoupled reactions are those that produce reactive (reduced) oxygen species (ROS), such as superoxide anion (O-2.) and/or hydrogen peroxide (H2O2). As an oxygenase, NOS has been known for more than two decades, yet there is no complete description of oxygen stoichiometry. The present paper is focused on oxygen stoichiometry and the effects of cofactor binding on the neuronal isoform (nNOS) on oxygen uptake and product formation. Products of the uncoupled reactions are analyzed using diacetyldeuteroheme-substituted horseradish peroxidase as a trapping agent for both O-2. and H2O2. The addition of calmodulin not only stimulated the oxygen uptake rate but also changed the product of the uncoupled reaction, supporting the possibility of two different sites for electron leakage to molecular oxygen. Quantitative analysis of the uncoupled (substrate-free) reaction revealed a stoichiometry close to the theoretical value, and adding L-arginine not only initiates the coupled reaction, but also inhibits oxygen uptake. The presence of tetrahydrobiopterin affects oxygen metabolism by lowering the apparent Km value of nNOS for oxygen in the uncoupled reaction.


Assuntos
Óxido Nítrico Sintase Tipo I/metabolismo , Oxigênio/metabolismo , Animais , Ânions , Arginina/química , Calmodulina/metabolismo , Catálise , Escherichia coli/metabolismo , Peróxido de Hidrogênio/farmacologia , Cinética , Modelos Químicos , Consumo de Oxigênio , Espécies Reativas de Oxigênio , Especificidade por Substrato , Superóxidos/química , Fatores de Tempo
3.
J Biol Chem ; 281(45): 34246-57, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16966328

RESUMO

The crystal structure of the neuronal nitric-oxide synthase (nNOS) NADPH/FAD binding domain indicated that Ser-1176 is within hydrogen bonding distance of Asp-1393 and the O4 atom of FAD and is also near the N5 atom of FAD (3.7 A). This serine residue is conserved in most of the ferredoxin-NADP+ reductase family of proteins and is important in electron transfer. In the present study, the homologous serines of both nNOS (Ser-1176) and endothelial nitric-oxide synthase (eNOS) (Ser-942) were mutated to threonine and alanine. Both substitutions yielded proteins that exhibited decreased rates of electron transfer through the flavin domains, in the presence and absence of Ca2+/CaM, as measured by reduction of potassium ferricyanide and cytochrome c. Rapid kinetics measurements of flavin reduction of all the mutants also showed a decrease in the rate of flavin reduction, in the absence and presence of Ca2+/CaM, as compared with the wild type proteins. The serine to alanine substitution caused both nNOS and eNOS to synthesize NO more slowly; however, the threonine mutants gave equal or slightly higher rates of NO production compared with the wild type enzymes. The midpoint redox potential measurements of all the redox centers revealed that wild type and threonine mutants of both nNOS and eNOS are very similar. However, the redox potentials of the FMN/FMNH* couple for alanine substitutions of both nNOS and eNOS are >100 mV higher than those of wild type proteins and are positive. These data presented here suggest that hydrogen bonding of the hydroxyl group of serine or threonine with the isoalloxazine ring of FAD and with the amino acids in its immediate milieu, particularly nNOS Asp-1393, affects the redox potentials of various flavin states, influencing the rate of electron transfer.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Serina/química , Alanina/química , Alanina/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Calmodulina/genética , Catálise , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Ligação de Hidrogênio , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , NADP/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo III/genética , Oxirredução , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos , Serina/genética , Treonina/química , Treonina/genética
4.
Nitric Oxide ; 14(3): 228-37, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16412670

RESUMO

We report here that NADPH analogs such as 2'5'ADP, ATP, and 2'AMP paradoxically activate constitutive calcium/calmodulin regulated nitric oxide synthases (cNOS), including the endothelial isoform (eNOS) and the neuronal isoform (nNOS). These activators compete with NADPH by filling the binding site of the adenine moiety of NADPH, but do not occupy the entire NADPH binding domain. Effects of these analogs on cNOS's include increasing the electron transfer rate to external acceptors, as assessed by cytochrome c reductase activity in the absence of calmodulin. In addition, NO synthase activity in the presence of calmodulin (with or without added calcium) was increased by the addition of NADPH analogs. In contrast, the same NADPH analogs inhibit iNOS, the calcium insensitive inducible isoform, which lacks control elements found in constitutive isoforms. Because ATP and ADP are among the effective activators of cNOS isoforms, these effects may be physiologically relevant.


Assuntos
Difosfato de Adenosina/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , NADP/análogos & derivados , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico/biossíntese , Animais , Cálcio/farmacologia , Calmodulina/farmacologia , Bovinos , Transporte de Elétrons , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Estrutura Terciária de Proteína , Ratos
5.
Biochem Biophys Res Commun ; 338(1): 543-9, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16154533

RESUMO

Using headspace gas chromatography-mass spectrometry, we detected significant amounts of nitrous oxide in the reaction products of the monooxygenase reaction catalyzed by neuronal nitric oxide synthase. Nitrous oxide is a dimerization product of nitroxyl anion; its presence in the reaction products indicates that the nitroxyl anion is a product of the neuronal nitric oxide synthase-catalyzed reaction.


Assuntos
Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nitroso/química , Óxido Nitroso/metabolismo , Animais , Escherichia coli , Cromatografia Gasosa-Espectrometria de Massas/métodos
6.
J Biol Chem ; 279(35): 36876-83, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15210721

RESUMO

Control of nitric oxide (NO) synthesis in the constitutive nitric-oxide synthases (NOS) by calcium/calmodulin is exerted through the regulation of electron transfer from NADPH through the reductase domains. This process has been shown previously to involve the calmodulin binding site, the autoinhibitory insertion in the FMN binding domain, and the C-terminal tail. Smaller sequence elements also appear to correlate with control. Although some of these elements appear well positioned to function in control, they are poorly conserved; their role in control is neither well established nor defined by available information. In this study mutations have been induced in the small insertion of the hinge subdomain, which has been shown recently to form a beta hairpin in structural studies of the neuronal NOS reductase domains adjacent to the calmodulin site and the autoinhibitory element. Modification of the small insertion in neuronal NOS tends to increase cytochrome c reduction but not NO synthetic activity; some modifications or deletions in the corresponding region in endothelial NOS modestly increase activity under some conditions. Unexpectedly, some minor changes in the sequence introduce a loss in the content of heme relative to flavin cofactors. Taken together, these results suggest that the small insertion protects the calmodulin binding site and that it may be a modulator of NOS activity.


Assuntos
Óxido Nítrico Sintase/química , Difosfato de Adenosina/química , Animais , Sequência de Bases , Sítios de Ligação , Calmodulina/química , Bovinos , Cromatografia , Redutases do Citocromo/química , Citocromos c/metabolismo , Elétrons , Eletroforese em Gel de Poliacrilamida , Endopeptidases/química , Escherichia coli/metabolismo , Deleção de Genes , Heme/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , NADPH-Ferri-Hemoproteína Redutase/química , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I , Óxido Nítrico Sintase Tipo III , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência do Ácido Nucleico , Raios Ultravioleta
7.
J Biol Chem ; 279(18): 18759-66, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-14715665

RESUMO

The three mammalian nitric-oxide synthases produce NO from arginine in a reaction requiring 3 electrons per NO, which are supplied to the catalytic center from NADPH through reductase domains incorporating FAD and FMN cofactors. The isoforms share a common reaction mechanism and requirements for reducing equivalents but differ in regulation; the endothelial and neuronal isoforms are controlled by calcium/calmodulin modulation of the electron transfer system, while the inducible isoform binds calmodulin at all physiological Ca(2+) concentrations and is always on. The thermodynamics of electron transfer through the flavin domains in all three isoforms are basically similar. The major flavin states are FMN, FMNH., FMNH(2), FAD, FADH., and FADH(2). The FMN/FMNH. couple is high potential ( approximately 100 mV) in all three isoforms and is unlikely to be catalytically competent; the other three flavin couples form a nearly isopotential group clustered around -250 mV. Reduction of the flavins by the pyridine nucleotide couple at -325 mV is thus moderately thermodynamically favorable. The ferri/ferroheme couple in all three isoforms is approximately -270 mV in the presence of saturating arginine. Ca(2+)/calmodulin has no effect on the potentials of any of the couples in endothelial nitric-oxide synthase (eNOS) or neuronal nitric-oxide synthase (nNOS). The pH dependence of the flavin couples suggests the presence of ionizable groups coupled to the flavin redox/protonation states.


Assuntos
Óxido Nítrico Sintase/química , Termodinâmica , Animais , Calmodulina/farmacologia , Bovinos , Eletroquímica , Flavinas/química , Heme/química , Humanos , Concentração de Íons de Hidrogênio , Isoenzimas/química , Óxido Nítrico Sintase Tipo II , Óxido Nítrico Sintase Tipo III , Oxirredução , Ratos , Proteínas Recombinantes/química , Titulometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...