Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Appl Clin Med Phys ; 25(6): e14351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551396

RESUMO

BACKGROUND: Polyp detection and localization are essential tasks for colonoscopy. U-shape network based convolutional neural networks have achieved remarkable segmentation performance for biomedical images, but lack of long-range dependencies modeling limits their receptive fields. PURPOSE: Our goal was to develop and test a novel architecture for polyp segmentation, which takes advantage of learning local information with long-range dependencies modeling. METHODS: A novel architecture combining with multi-scale nested UNet structure integrated transformer for polyp segmentation was developed. The proposed network takes advantage of both CNN and transformer to extract distinct feature information. The transformer layer is embedded between the encoder and decoder of a U-shape net to learn explicit global context and long-range semantic information. To address the challenging of variant polyp sizes, a MSFF unit was proposed to fuse features with multiple resolution. RESULTS: Four public datasets and one in-house dataset were used to train and test the model performance. Ablation study was also conducted to verify each component of the model. For dataset Kvasir-SEG and CVC-ClinicDB, the proposed model achieved mean dice score of 0.942 and 0.950 respectively, which were more accurate than the other methods. To show the generalization of different methods, we processed two cross dataset validations, the proposed model achieved the highest mean dice score. The results demonstrate that the proposed network has powerful learning and generalization capability, significantly improving segmentation accuracy and outperforming state-of-the-art methods. CONCLUSIONS: The proposed model produced more accurate polyp segmentation than current methods on four different public and one in-house datasets. Its capability of polyps segmentation in different sizes shows the potential clinical application.


Assuntos
Pólipos do Colo , Colonoscopia , Redes Neurais de Computação , Humanos , Pólipos do Colo/diagnóstico por imagem , Colonoscopia/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/patologia , Interpretação de Imagem Assistida por Computador/métodos , Bases de Dados Factuais
2.
PeerJ ; 12: e16748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304189

RESUMO

Acute lung injury (ALI) is one of the most serious complications of sepsis, characterized by high morbidity and mortality rates. Ferroptosis has recently been reported to play an essential role in sepsis-induced ALI. Excessive neutrophil extracellular traps (NETs) formation induces exacerbated inflammation and is crucial to the development of ALI. In this study, we explored the effects of ferroptosis and NETs and observed the therapeutic function of mesenchymal stem cells (MSCs) on sepsis-induced ALI. First, we produced a cecal ligation and puncture (CLP) model of sepsis in rats. Ferrostain-1 and DNase-1 were used to inhibit ferroptosis and NETs formation separately, to confirm their effects on sepsis-induced ALI. Next, U0126 was applied to suppress the MEK/ERK signaling pathway, which is considered to be vital to NETs formation. Finally, the therapeutic effect of MSCs was observed on CLP models. The results demonstrated that both ferrostain-1 and DNase-1 application could improve sepsis-induced ALI. DNase-1 inhibited ferroptosis significantly in lung tissues, showing that ferroptosis could be regulated by NETs formation. With the inhibition of the MEK/ERK signaling pathway by U0126, NETs formation and ferroptosis in lung tissues were both reduced, and sepsis-induced ALI was improved. MSCs also had a similar protective effect against sepsis-induced ALI, not only inhibiting MEK/ERK signaling pathway-mediated NETs formation, but also alleviating ferroptosis in lung tissues. We concluded that MSCs could protect against sepsis-induced ALI by suppressing NETs formation and ferroptosis in lung tissues. In this study, we found that NETs formation and ferroptosis were both potential therapeutic targets for the treatment of sepsis-induced ALI, and provided new evidence supporting the clinical application of MSCs in sepsis-induced ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Butadienos , Armadilhas Extracelulares , Ferroptose , Células-Tronco Mesenquimais , Nitrilas , Sepse , Ratos , Animais , Armadilhas Extracelulares/metabolismo , Lesão Pulmonar Aguda/etiologia , Desoxirribonuclease I/farmacologia , Sepse/complicações , Células-Tronco Mesenquimais/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/efeitos adversos
3.
J Pak Med Assoc ; 74(1): 26-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219160

RESUMO

Objectives: To evaluate the efficacy of miniprobe endoscopic ultrasonography for the diagnosis and adjuvant treatment of patients with colorectal submucosal lesions. METHODS: The retrospective study was conducted at the Beijing Chao-Yang Hospital, Capital Medical University, China, and comprised data from January 1, 2016, to July 31, 2021, related to patients of either gender with colorectal submucosal lesions who underwent miniprobe endoscopic ultrasonography. The findings were compared with biopsy specimens and clinical diagnoses. Diagnostic features of miniprobe endoscopic ultrasonography were assessed along with its accuracy. Data was analysed using R 4.1.2. RESULTS: Of the 237 patients, 121(51.1%) were female and 116(48.9%) were male. The overall mean age was 55.6±12.9 years. Miniprobe endoscopic ultrasonography successfully imaged all 237(100%) colorectal submucosal lesions, and 188(79.3%) had consistent results compared to histopathological findings. The majority of lesions were <10mm 102(43.4%) or 10-19mm 84(35.7%) in size. Those detected with high echogenicity were 126(53.2%) and those with low/low-medium echogenicity were 83(35.0%). Tumour size 10-19mm and uneven echo quality significantly increased the accuracy of miniprobe endoscopic ultrasonography (p<0.05). CONCLUSIONS: Miniprobe endoscopic ultrasonography was able to provide precise information about the size, layer of origin, echogenicity and border of colorectal submucosal lesions, and had a high accuracy in the differential diagnosis of such lesions.


Assuntos
Neoplasias Colorretais , Endossonografia , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Endossonografia/métodos , Estudos Retrospectivos , China , Diagnóstico Diferencial , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/patologia
4.
Cell Commun Signal ; 21(1): 163, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381027

RESUMO

BACKGROUND: Postinduction hypotension caused by propofol remains a non-negligible problem for anesthesiologists, and is especially severe in chronic hypertensive patients with long-term vasoconstriction and decreased vascular elasticity. The functional change in gap junctions composed of Cx43 (Cx43-GJs) is reported as the biological basis of synchronized contraction or relaxation of blood vessels. Thus, we investigated the role of Cx43-GJs in propofol-induced dramatic blood pressure fluctuations in chronic hypertensive patients, and their internal mechanisms. METHODS: Human umbilical artery smooth muscle cells (HUASMCs) were pretreated with long-term angiotensin II (Ang II), with or without propofol, to simulate the contraction and relaxation of normal and hypertensive VSMCs during anesthesia induction. The levels of F-actin polymerization and MLC2 phosphorylation were used as indicators to observe the contraction and relaxation of HUASMCs. Different specific activators, inhibitors and siRNAs were used to explore the role of Cx43-GJs and Ca2+ as well as the RhoA/ LIMK2/cofilin and RhoA/MLCK signaling pathways in the contraction and relaxation of normal and hypertensive HUASMCs. RESULTS: Both F-actin polymerization and MLC2 phosphorylation were significantly enhanced in Ang II-pretreated HUASMCs, along with higher expression of Cx43 protein and stronger function of Cx43-GJs than in normal HUASMCs. However, with propofol administration, similar to Gap26 and Cx43-siRNA, the function of Cx43-GJs in Ang II-pretreated HUASMCs was inhibited compared with that in normal HUASMCs, accompanied by a larger decrease in intracellular Ca2+ and the RhoA/LIMK2/cofilin and RhoA/MLCK signaling pathways. Eventually F-actin polymerization and MLC2 phosphorylation were more dramatically decreased. However, these effects could be reversed by RA with enhanced Cx43-GJ function. CONCLUSION: Long-term exposure to Ang II significantly enhanced the expression of the Cx43 protein and function of Cx43-GJs in HUASMCs, resulting in the accumulation of intracellular Ca2+ and the activation of its downstream RhoA/LIMK2/cofilin and RhoA/MLCK signaling pathways, which maintained HUASMCs in a state of excessive-contraction. With inhibition of Cx43-GJs by propofol in Ang II-pretreated HUASMCs, intracellular Ca2+ and its downstream signaling pathways were dramatically inhibited, which ultimately excessively relaxed HUASMCs. This is the reason why the blood pressure fluctuation of patients with chronic hypertension was more severe after receiving propofol induction. Video Abstract.


Assuntos
Hipertensão , Propofol , Humanos , Regulação para Baixo , Conexina 43 , Músculo Liso Vascular , Propofol/farmacologia , Actinas , Miócitos de Músculo Liso , Angiotensina II/farmacologia , Fatores de Despolimerização de Actina
5.
Sci Total Environ ; 871: 161968, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739016

RESUMO

Activated carbon is widely used to remove effluent organic matter (EfOM) from bio-treated coking wastewater. However, the critical carbon properties affecting adsorption performance are still unclear. Nine commercial powdered activated carbons (PACs) with different pore structures, surface functional groups, and surface charges were used to adsorb EfOM from bio-treated coking wastewater, which was fractionated according to their molecular weight (MW) and hydrophobicity. Good correlations were observed between the adsorption of biopolymers (MW > 20,000 Da, 7 %) and macropore volume (>50 nm), as well as between the adsorption of humics (MW = 1000 ~ Da, 36 %) and mesopore volume (2-50 nm), suggesting that the adsorption sites of EfOM depended on their molecular size. Higher isoelectric points and fewer acidic groups promoted the adsorption of the most negatively charged hydrophobic acids (HPOA, 39.5 %). According to variation partitioning analysis (VPA), mesopore-macropore greatly contributed to the adsorption capacities of EfOM (71.3 %), whereas the sum of phenolic hydroxyl and carboxyl (26.3 %) and isoelectric point (12.2 %) affected the normalized adsorption capacities of EfOM. In conclusion, PAC with a higher mesopore volume, fewer acidic groups, and a higher isoelectric point was desirable for removing EfOM from bio-treated coking wastewater. This study provides guidance for the selection of PAC for the removal of EfOM from bio-treated coking wastewater.

6.
BMC Cancer ; 22(1): 1027, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175877

RESUMO

The protein Talin1 encoded by the TLN1 gene is a focal adhesion-related protein that binds to various cytoskeletal proteins and plays an important role in cell adhesion and movement. Recent studies have shown that it is overexpressed in prostate cancer, liver cancer, and oral squamous cell carcinoma, and is closely related to tumor progression and metastasis. This study integrated bioinformatics and functional analysis to reveal the prognosis and potential functions of TLN1 in AML. The results showed that the expression level of TLN1 was abnormally increased in AML and localized in the cell membrane and cytoplasm, and TLN1 is a significant prognostic indicator of overall survival (OS). Enrichment analysis of related genes showed that TLN1 is related to neutrophil mediated immunity, neutrophil activation and may regulate important signal pathways in hematological tumors including tyrosine kinase receptor, FLT3 and PIK3/AKT. The PPI network shows that TLN1 and MYH9 may be involved in the process of AML tumors together with PIP5K1C, ROCK1, S100A4, MY01A and WAC. Immune infiltration analysis explains that TLN1 is associated with multiple immune cells and may be an important immune marker in AML. Furthermore, molecular biology experiments confirmed that TLN1 is related to the proliferation, differentiation and cycle of AML cells. Silencing TLN1 can inhibit the proliferation of AML cells and promote differentiation through the Talin1/P-AKT/CREB signaling pathway.


Assuntos
Carcinoma de Células Escamosas , Leucemia Mieloide Aguda , Neoplasias Bucais , Proliferação de Células/genética , Proteínas do Citoesqueleto , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases , Talina/genética , Talina/metabolismo , Quinases Associadas a rho
7.
Sci Total Environ ; 837: 155768, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533869

RESUMO

While abundant volatile compounds (VOCs) have been identified in coking wastewater, the structures and occurrence of non-volatile organic compounds (non-VOCs) have remained unknown. In this study, 3966 non-VOCs belonging to 24 groups were tentatively identified for the first time in wastewater from four biological coking wastewater treatment systems in northern China using a non-target screening technique. A total of 227 compounds with CHNO, CHO, CHOS, and CHNOS elemental compositions were assigned with level 2 identification confidence, and 19 of them were confirmed with authentic standards, with 9-methyl-9H-carbazole-3-carbaldehyde (1706.3-2032.7 µg/L) and 3-Indolyl acetic acid monomethyl terephthalate (773.7-1449.9 µg/L) as the top two compounds in the influents, and 9-methyl-9H-carbazole-3-carbaldehyde (31.8-130.1 µg/L) and monomethyl terephthalate (13.9-196.6 µg/L) as the top two in the effluents. The four groups of substances accounted for 93.4% and 71.5% of the total responses of tentatively identified compounds in the influents and biological effluents, respectively, and were estimated to contribute 32.3-48.9% of the chemical oxygen demand in the biological effluents. In comparison with those in the influent, abundant S-containing compounds (CHOS and CHNOS, 35.2% of the total responses) were observed in the biological effluents, suggesting their highly bio-refractory characteristics. The advanced treatment process using synchronized oxidation-adsorption could almost completely remove the CHOS and CHNOS compounds from the biological effluents.


Assuntos
Coque , Poluentes Químicos da Água , Coque/análise , Monitoramento Ambiental/métodos , Nitrogênio , Oxigênio , Enxofre , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise
8.
Environ Technol ; 42(22): 3432-3440, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32070262

RESUMO

It is a challenging environmental issue to develop a cost-efficient approach for the removal of low-concentration refractory organics in industrial wastewater. In this study, the Fenton-coagulation process was utilised to remove the organics from the industrial effluent. The operational conditions of the Fenton-coagulation process were optimised, and then, the molecular weight (MW) and resin fraction distribution of dissolved organic matter (DOM) were investigated before and after the Fenton-coagulation process. The results showed that the efficiency of organic matter removal was affected by the Fe2+/H2O2 molar ratio, pH, and reaction time. The removal rate of chemical oxygen demand (COD) by Fenton-coagulation process reached 37.8% under the following conditions: pH = 4.0 - 5.0, H2O2 concentration = 34 mg/L, Fe2+/H2O2 molar ratio = 1.5, and reaction time = 120 min. The resin fraction distribution results showed that hydrophobic bases (HoB) were almost completely removed, and the removal rate of hydrophobic acids (HoA) reached 58%, while hydrophilic matter (HiM) became the dominant form in the final effluent after the Fenton-coagulation process due to the appearance of hydrophilic charged fractions (HiC). The results were explained by a two-step mechanism (Fenton oxidation and Fe3+ coagulation). According to the molecular weight (MW), 35.7% removal of the main fractions of organic matter with MW < 1 kDa was achieved. Furthermore, a pilot test proved that the final effluent quality after the Fenton-coagulation process conformed to the first class of the A discharge standard of pollutants for municipal wastewater treatment plants in Tianjin.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Peróxido de Hidrogênio , Resíduos Industriais/análise , Ferro , Oxirredução , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
10.
Environ Pollut ; 265(Pt B): 114960, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32593902

RESUMO

In this study, the distribution profiles, emission characteristics, and health risks associated with 43 volatile and semi-volatile organic compounds, including 15 phenols, 18 polycyclic aromatic hydrocarbons (PAHs), 6 BTEX, and 4 other compounds, were determined in the wastewater treatment plant (WWTP) of a coking factory (plant C) and the succeeding final WWTP (central WWTP). Total phenols with a concentration of 361,000 µg L-1 were the predominant compounds in the influent wastewater of plant C, whereas PAHs were the major compounds in the final effluents of both coking WWTPs (84.4 µg L-1 and 30.7 µg L-1, respectively). The biological treatment process in plant C removed the majority of volatile organic pollutants (94.1%-99.9%). A mass balance analysis for plant C showed that biodegradation was the main removal pathway for all the target compounds (56.6%-99.9%) except BTEX, chlorinated phenols, and high molecular weight (MW) PAHs. Chlorinated phenols and high MW PAHs were mainly removed via sorption to activated sludge (51.8%-73.2% and 60.2%-75.9%, respectively). Air stripping and volatilization were the dominant mechanisms for removing the BTEX compounds (59.8%-73.8%). The total emission rates of the detected volatile pollutants from plant C and the central WWTP were 1,640 g d-1 and 784 g d-1, respectively. Benzene from the equalization basins of plant C and the central WWTP corresponded to the highest inhalation carcinogenic risks (1.4 × 10-3 and 3.2 × 10-4, respectively), which exceeded the acceptable level for human health (1 × 10-6) recommended by the United States Environmental Protection Agency. The results showed that BaP exhibited the highest inhalation non-cancer risk, with a hazard index ratio of 70 and 30 for plant C and the central WWTP, respectively. Moreover, the excess sludge generated during wastewater treatment should also be carefully handled because it adsorbed abundant PAHs and chlorinated phenols at coking plant C (58,000 µg g-1 and 3,500 µg g-1) and the central WWTP (622 µg g-1 and 54 µg g-1).


Assuntos
Coque , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Humanos , Medição de Risco , Eliminação de Resíduos Líquidos , Águas Residuárias
11.
Water Res ; 173: 115517, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32028246

RESUMO

Efficient removal of the non-biodegradable organics from the biological effluent of industrial wastewater is becoming more and more important with the increasing demand for stringent discharge regulation. In this study, a synchronized oxidation-adsorption (SOA) technology was proposed for the removal of hardly biodegradable COD (hard COD) from the biological effluent of coking wastewater, and its performance was verified in a full-scale coking industrial park wastewater treatment plant (Q = 5,000 m3/d). The SOA was performed by coupling oxidation by hydroxyl radical (molar ratio of Fe2+ to H2O2 of 1:1 and pH = 5.0 ± 0.2) and adsorption by in-situ-formed nano hydrolyzed Fe3+ particles (nano-FeOOH). The nano hydrolyzed Fe3+ particles formed during the SOA exhibited a much higher specific surface area (22.83 m2/g) than the particles (10.87 m2/g) formed during the polyferric sulfate coagulation (PFSC). In comparison to PFSC, SOA performed better in terms of average COD removal (39% vs 18%) from the biological effluent. Wastewater fractionation result showed that SOA performed better in the removal of the hydrophobic acid matters, which was supported by the experiment using fulvic acid as the model organics. Mechanism studies using both biological effluent and fulvic acid solution showed that more carboxylic substances were adsorbed by the in-situ-formed nano-hydrolyzed Fe3+ particles formed by SOA than by PFSC, which was likely due to the generation of carboxylic substances by hydroxyl radical oxidation. In the full-scale, the COD was reduced from 118.5-198.0 mg/L in the PFSC-pretreated effluent to 61.5-104.0 mg/L through SOA treatment. The SOA treatment characterized with a mild pH condition (pH 5) and low molar ratio of Fe2+ to H2O2 (1:1) is particularly suitable for the polishing purpose to remove limited amount of organic pollutants from wastewater before discharge.


Assuntos
Coque , Poluentes Químicos da Água , Adsorção , Peróxido de Hidrogênio , Resíduos Industriais , Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias
12.
Chemosphere ; 238: 124632, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31472355

RESUMO

Fenton (Fe2+ + H2O2) reagents acting to remove organic pollutants possess dual functions, including the oxidation by hydroxyl radicals and the coagulation of Fe(III). Previous papers have extensively studied the oxidation reactions by hydroxyl radicals, however, the coagulation role of Fenton for benzoic acid (BA) removal is not clear. Comparing three coagulation systems, it was found that Fenton coagulation possesses a significant advantage for the removal of BA. Through Fenton conditional experiments, results showed that with the increase of H2O2 dosage, not only was the Fenton oxidation effect improved, but the Fenton coagulation effect was also significantly enhanced. Interestingly, the flocs produced by in situ Fenton possess a better coagulation effect than an aged Fenton system when processing BA. To further explain these results, Zeta potential, Transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray absorption fine structure (EXAFS) and Brunner-Emmet-Teller (BET) measurements were used for characterization, and we found that the flocs produced by Fenton possessed a smaller particle size, lower polymerization states and a larger specific surface area and pore volume, which exposed more active sites to create a better coagulation effect. Additionally, through Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and Gas chromatography-mass spectrometer (GC-MS), we found that in situ Fenton oxidation and coagulation have synergistic effects, and the carboxyl-containing intermediates produced by the Fenton oxidation of BA can be combined with hydroxyl active sites of the flocs produced by in situ Fenton, resulting in a better removal effect. Finally, Fenton oxidation increases oxygen/carbon (O/C) to promote Fenton coagulation, and in situ Fenton more fully utilizes the active sites on the flocs' surface.


Assuntos
Ácido Benzoico/análise , Peróxido de Hidrogênio/química , Ferro/química , Esgotos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Floculação , Radical Hidroxila/química , Oxirredução , Espectroscopia Fotoeletrônica , Difração de Raios X
13.
BMC Gastroenterol ; 19(1): 226, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881948

RESUMO

BACKGROUND: The Asia-Pacific Colorectal Screening (APCS) score is effective to screen high-risk groups of advanced colorectal neoplasia (ACN) patients but needs revising and can be combined with the fecal immunochemical test (FIT). This paper aimed to improve the APCS score and evaluate its use with the FIT in stratifying the risk of ACN. METHODS: This prospective and multicenter study enrolled 955 and 1201 asymptomatic Chinese participants to form the derivation and validation set, respectively. Participants received the risk factor questionnaire, colonoscopy and FIT. Multiple logistic regression was applied, and C-statistic, sensitivity and negative predictive values (NPVs) were used to compare the screening efficiency. RESULTS: A modified model was developed incorporating age, body mass index (BMI), family history, diabetes, smoking and drinking as risk factors, stratifying subjects into average risk (AR) or high risk (HR). In the validation set, the HR tier group had a 3.4-fold (95% CI 1.8-6.4) increased risk for ACN. The C-statistic for the modified score was 0.69 ± 0.04, and 0.67 ± 0.04 for the original score. The sensitivity of the modified APCS score combined with FIT for screening ACN high-risk cohorts was 76.7% compared with 36.7% of FIT alone and 70.0% of the modified APCS score alone. The NPVs of the modified score combined with FIT for ACN were 98.0% compared with 97.0% of FIT alone and 97.9% of the modified APCS score alone. CONCLUSIONS: The modified score and its use with the FIT are efficient in selecting the HR group from a Chinese asymptomatic population.


Assuntos
Colonoscopia , Neoplasias Colorretais/diagnóstico , Sangue Oculto , Fatores Etários , Consumo de Bebidas Alcoólicas , Doenças Assintomáticas , China , Neoplasias Colorretais/patologia , Diabetes Mellitus , Exercício Físico , Comportamento Alimentar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade , Valor Preditivo dos Testes , Estudos Prospectivos , Análise de Regressão , Medição de Risco , Fatores de Risco , Tamanho da Amostra , Sensibilidade e Especificidade , Fatores Sexuais , Fumar , Inquéritos e Questionários
14.
J Hazard Mater ; 379: 120695, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31279310

RESUMO

This study focused on investigating reactor performance, simultaneous methanogeneis and denitrifiction (SMD) process for treatment of a sulfate plus organic sulfur - rich 3,4,5-Triethoxybenzaldehyde (TMBA) manufacturing wastewater with variable COD/TSO42- (total sulfate) ratio by micro-electric field- zero-valent-iron (ZVI) UASB for 390 days. The initial COD/TSO42- was set as 1.42, 0.9 and 0.5, respectively by manually introducing sulfate. The experimental results indicated that micro-electric field- zero-valent-iron UASB was an attractive integrated option for satisfactory COD removal, nitrate reduction and a reasonable methane yield rate even at COD/TSO42- as low as 0.9. Further declining the COD/TSO42- to 0.5 can result in a moderate inhibition of SMD process. The behavior of organic S release was not inhibited over the entire experimental period. Thus, surprisingly, sulfate concentration in the effluent was always higher than that in the influent. In comparison with sludge sample at Day-1, sludge at Day-390 was characterized with high abundant Tissierella Soehngenia, Anaerolinaceae and Brevundimonas diminuta, which played critical role in promising performance in COD abatement. The relatively low abundance of sulfate reducing bacteria (SRB) such as Desulfobulbus and Desulfomicrobium can explain the lower sulfate reduction efficiency in term of high concentration of sulfate plus released from organic S-rich compounds.


Assuntos
Reatores Biológicos/microbiologia , Técnicas Eletroquímicas/métodos , Ferro/química , Metano/biossíntese , Sulfatos/análise , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Anaerobiose , Benzaldeídos/química , Análise da Demanda Biológica de Oxigênio , Desnitrificação , Águas Residuárias/química , Águas Residuárias/microbiologia
15.
Water Sci Technol ; 79(9): 1790-1797, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31241484

RESUMO

In this study, an extended Fenton process was used to improve biodegradability of the waste drilling mud containing bio-refractory polymers. Variation of biodegradability and organics with different molecular weights with the oxidation time were investigated during the Fenton oxidation process. Although the residual total organic carbon (TOC) arrived at a stable level soon after oxidation reaction, organics with the lower molecular weight increased and its biodegradability was improved significantly in the extended oxidation process, which originated from decomposition of residual H2O2 catalyzed by transformation of the Fe3+/Fe2+ and organoradicals. Under the conditions that follow: pH 3.0, H2O2 500 mg L-1, Fe2+ 250 mg L-1, oxidation time 120 min, further TOC removal of 35.9% and biochemical oxygen demand and total organic carbon (BOD/TOC) ratio of 0.83 was achieved. At the biological test, a substantial increase in TOC degradation by biological treatment with extension of Fenton oxidation time was observed. Finally, more than 90% biological removal of the TOC was achieved for the 120 min oxidation treatment. The experimental results highlight that an extended process can be adopted to improve the biodegradability of wastewater by utilization of the slow reaction of hydrogen peroxide with Fe3+ and organoradicals.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Peróxido de Hidrogênio , Ferro , Oxirredução
16.
J Environ Sci (China) ; 83: 1-7, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31221373

RESUMO

Due to the severe restrictions imposed by legislative frameworks, the removal of polyacrylamide (PAM) rapidly and effectively from produced wastewater in offshore oilfields before discharge is becoming an urgent challenge. In this study, a novel advanced oxidation process based on plasma operated in the gas-liquid interface was used to rapidly decompose PAM, and multiple methods including viscometry, flow field-flow fractionation multi-angle light scattering, UV-visible spectroscopy, and attenuated total reflectance-Fourier transform infrared spectroscopy were used to characterize the changes of PAM. Under a discharge voltage of 25 kV and pH 7.0, the PAM concentration decreased from 100 to 0 mg/L within 20 min and the total organic carbon (TOC) decreased from 49.57 to 1.23 mg/L within 240 min, following zero-order reaction kinetics. Even in the presence of background TOC as high as 152.2 mg/L, complete removal of PAM (100 mg/L) was also achieved within 30 min. The biodegradability of PAM improved following plasma treatment for 120 min. Active species (such as O3 and H2O2) were produced in the plasma. Hydroxyl radical was demonstrated to play an important role in the degradation of PAM due to the inhibitory effect observed after the addition of an ·OH scavenger, Na2CO3. Meanwhile, the release of ammonia and nitrate nitrogen confirmed the cleavage of the acylamino group. The results of this study demonstrated that plasma, with its high efficiency and chemical-free features, is a promising technology for the rapid removal of PAM.


Assuntos
Resinas Acrílicas/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Resinas Acrílicas/análise , Biodegradação Ambiental , Peróxido de Hidrogênio/química , Radical Hidroxila , Cinética , Campos de Petróleo e Gás , Oxirredução , Poluentes Químicos da Água/análise
17.
Front Microbiol ; 10: 826, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068913

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide. Its incidence is still increasing, and the mortality rate is high. New therapeutic and prognostic strategies are urgently needed. It became increasingly recognized that the gut microbiota composition differs significantly between healthy people and CRC patients. Thus, identifying the difference between gut microbiota of the healthy people and CRC patients is fundamental to understand these microbes' functional roles in the development of CRC. We studied the microbial community structure of a CRC metagenomic dataset of 156 patients and healthy controls, and analyzed the diversity, differentially abundant bacteria, and co-occurrence networks. We applied a modified zero-inflated lognormal (ZIL) model for estimating the relative abundance. We found that the abundance of genera: Anaerostipes, Bilophila, Catenibacterium, Coprococcus, Desulfovibrio, Flavonifractor, Porphyromonas, Pseudoflavonifractor, and Weissella was significantly different between the healthy and CRC groups. We also found that bacteria such as Streptococcus, Parvimonas, Collinsella, and Citrobacter were uniquely co-occurring within the CRC patients. In addition, we found that the microbial diversity of healthy controls is significantly higher than that of the CRC patients, which indicated a significant negative correlation between gut microbiota diversity and the stage of CRC. Collectively, our results strengthened the view that individual microbes as well as the overall structure of gut microbiota were co-evolving with CRC.

18.
RSC Adv ; 9(28): 16044-16048, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35521366

RESUMO

It is of great significance to know the fate of the polymers and surfactants used for enhanced oil recovery (EOR) in oil reservoirs at a relatively high temperature/pressure. In this paper, the changes of the properties of a polymer (partially hydrolyzed polyacrylamide, HPAM) and a surfactant (petroleum sulfonate, PS) were investigated under simulated oil reservoir conditions (a temperature of 45, 60 or 75 °C and a pressure of 10, 15 or 20 MPa). The impacts of the property changes to emulsion stability were also highlighted. The results showed that the hydrolysis degree of HPAM increased from 24.3% to 28.9%, 29.7% and 35.4%, whereas the molecular weight (M w) decreased from 7.60 × 106 g mol-1 to 5.43 × 106 g mol-1, 4.49 × 106 g mol-1 and 2.87 × 106 g mol-1 as a function of raising the temperature to 45, 60 and 75 °C with 20 MPa, respectively, for a duration of one week. However, the increased pressure showed obvious prevention effects on the degradation of HPAM M w in the investigated pressure range of 10-20 MPa. There were no changes in the oil-water interfacial tension for PS solutions after high temperature/pressure treatment. The stabilization ability of HPAM to the emulsion decreased markedly after treatment because of the decreased viscosity attributed to the reduction of molecular weight, while that of PS did not change. It is reasonable to speculate that the influence of back produced HPAM to the stability of EOR produced water will be quite different in different oil reservoirs because of the differences in reservoir temperature, pressure and retention time, and therefore different strategies should be considered in treating the produced water from EOR.

19.
Environ Technol ; 40(11): 1401-1407, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29295670

RESUMO

To recover oil from crude oil containing sludge is still a research hot topic from the view of sustainability, in which ultrasonic has been proven to be an efficient and environment friendly technique. However, the effect of sludge characteristic on ultrasonic-assisted oil recovery efficiency is little known. In this study, the analysis of variance (ANOVA) was conducted based on six types of crude oily sludge with hydrophilicity and lipophilicity separately and five different ultrasonic operation factors (ultrasonic power (A), frequency (B), time (C), initial temperature (D) and pH (E)). The results showed that the oil recovery efficiency was mainly affected by the ultrasonic power and hydrophilicity of sludge (the highest 92% of oil recovery rate was achieved with the ultrasonic power of 240 W and hydrophilic sludge). Moreover, the wettability, decreased average particle size and increased specific surface area of sludge were found after ultrasonic treatment. Besides, changes in the oil component, such as the decrease of asphaltenes along with an increase of saturates, were also further observed. Therefore, the findings in this study can provide technical support for the practical application of ultrasonic technology in different kinds of oily sludge treatment.


Assuntos
Petróleo , Esgotos , Óleos , Temperatura
20.
Water Sci Technol ; 78(9): 1823-1832, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30566086

RESUMO

This study aimed to evaluate the feasibility of hyperthermophilic anaerobic digestion at 70 °C in the pretreatment of spiramycin fermentation residue. By feeding municipal excess sludge under a solid retention time of 5 days, the hyperthermophilic digester was successfully started up within 3 days from mesophilic digestion by a one-step temperature increase from 35 to 70 °C. MiSeq sequencing showed the fast establishment of thermophilic fermenting bacterial communities in 3 days immediately after the temperature increase, with increases in abundance of Coprothermobacter, Spirochaetaceae_uncultured and Fervidobacterium from <0.001%, 1.06% and <0.001% to 33.77%, 11.65% and 3.42%, respectively. The feasibility of hyperthermophilic digestion for spiramycin residue was evaluated in batch experiments for 7 days. Hyperthermophilic digestion considerably reduced antibiotic concentrations, with removal efficiencies of 55.3% and 99.0% for the spiramycin residue alone and its mixture with hyperthermophilic sludge, respectively. At the same time, the abundances of four macrolide-lincosamide-streptogramin resistance genes were also reduced within 7 days, due to the decrease of their corresponding hosts. These results suggest that hyperthermophilic digestion could easily be started up from mesophilic digestion and might be a suitable pretreatment approach for spiramycin residue.


Assuntos
Espiramicina/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Anaerobiose , Archaea , Reatores Biológicos , Fermentação , Esgotos , Espiramicina/análise , Temperatura , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...