Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 290: 102382, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33676242

RESUMO

Fluorite, as a scarce nonrenewable strategic non-metallic mineral resource, is the primary raw material for fluorine products used in diverse fields such as metallurgy, national defense, chemical and optical industries. With the increasing expansion of the related fields, the demand for high-quality fluorite continues to grow. Hence, the surge of interest in effectively utilizing fluorite resources has led to vast attention worldwide. So far, significant endeavors have been done to enhance the beneficiation of fluorite from relatively low-grade ores. It has been well appreciated that the froth flotation is of the most importance. However, to the best of the authors' knowledge, it lacks a thorough and critical review on the recent developments in fluorite flotation. This article begins with introducing the deposits and unique physical and chemical properties of fluorite from the perspective of the crystal structure. It is followed by a systematic review of common reagents involved in fluorite flotation, including collectors, depressants, regulators, modifiers, and frothers. Specifically, the synergistic effect of collectors and depressants on the recovery of fluorite is elaborated for the first time. Finally, the most widely seen fluorite-flotation cases, including separation of fluorite from quartz, calcite, barite, and sulfide, are summarized individually. The present review sheds new light on the deep understanding of fluorite flotation, the future synthesis of reagents, as well as their schemes in practical use. Meanwhile, such a novel rain of thought provided in this work has the potential to guide the flotation of other similar minerals extensively.

2.
ACS Omega ; 4(15): 16674-16682, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31616850

RESUMO

Wetting of solid surfaces occurs when the intervening air film between a water droplet and a solid surface ruptures. Although this rupturing phenomenon is well known, the underlying mechanism has not yet been well understood. In this work, the rupture of intervening air films is systematically studied by measuring the spatiotemporal thickness profiles of the air films between droplets of deionized water and flat solid surfaces using a synchronized triwavelength reflection interferometry microscope. It has been shown that the critical rupture thickness of the air film (h c) depends on the surface hydrophobicity of solid surfaces. The h c value was increased from 50 nm on a hydrophobic surface having an equilibrium water contact angle (θw) of 96° to 1.42 µm on a hydrophilic surface having a θw of 25°. In addition, an increase in the critical rupture thickness with decreasing surface hydrophobicity was found to be applicable not only to chemically treated quartz surfaces but also to a variety of natural mineral surfaces. By determining the pressure within the air films, we have shown that a strong attractive force is present between water droplets and hydrophilic surfaces, thereby accelerating the draining of air films. The measured forces might be of electrostatic origin, and the forces become less attractive with increasing hydrophobicity of solid surfaces. The present result provides a fundamental insight into the rupture of air films from the perspective of surface forces.

3.
Front Chem ; 7: 631, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608272

RESUMO

A simple two-step, shaking-assisted polydopamine (PDA) coating technique was used to impart polypropylene (PP) mesh with antimicrobial properties. In this modified method, a relatively large concentration of dopamine (20 mg ml-1) was first used to create a stable PDA primer layer, while the second step utilized a significantly lower concentration of dopamine (2 mg ml-1) to promote the formation and deposition of large aggregates of PDA nanoparticles. Gentle shaking (70 rpm) was employed to increase the deposition of PDA nanoparticle aggregates and the formation of a thicker PDA coating with nano-scaled surface roughness (RMS = 110 nm and Ra = 82 nm). Cyclic voltammetry experiment confirmed that the PDA coating remained redox active, despite extensive oxidative cross-linking. When the PDA-coated mesh was hydrated in phosphate saline buffer (pH 7.4), it was activated to generate 200 µM hydrogen peroxide (H2O2) for over 48 h. The sustained release of low doses of H2O2 was antibacterial against both gram-positive (Staphylococcus epidermidis) and gram-negative (Escherichia coli) bacteria. PDA coating achieved 100% reduction (LRV ~3.15) when incubated against E. coli and 98.9% reduction (LRV ~1.97) against S. epi in 24 h.

4.
Langmuir ; 34(47): 14215-14225, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30347975

RESUMO

Film thickness measurement of unstable thin liquid films (TLFs) remains a challenge due to the difficulty in determining the order of fringes prior to the film rupture. In the present work, a synchronized tri-wavelength reflection interferometry microscope (STRIM) was developed and employed to determine the spatiotemporal thickness profiles of the TLFs between air bubbles and various hydrophobic surfaces in 10-2 M NaCl solutions. Both accuracy and precision of film thickness measurements were found to be better than 3 nm over the range of 0-1 µm. It was found that when the radii of air bubbles were in the range 0.71-0.88 mm, the critical rupture thicknesses of the wetting films formed on hydrophobic quartz surfaces having water contact angles of 95° scattered over a range of 57-335 nm with a medium rupture thickness of 122 nm. For smaller air bubbles with radii of 0.13-0.26 mm, the critical rupture thicknesses were much more narrowly distributed with a medium rupture thickness of 27 nm. The result obtained with the TLFs between two air bubbles, i.e., foam film, showed that the critical rupture thickness was increased from 25 to 40 nm, when the sizes of air bubbles were increased from 220 to 960 µm. Compared to rupture thickness of the foam film, the critical rupture thickness of the TLF between an air bubble and a dodecane droplet was smaller, indicating that the film rupture might be related to the hydrophobicity of interacting surfaces. In addition to attractive surface forces, both wave motions and gas molecules in TLF might be associated with the film rupture.

5.
J Colloid Interface Sci ; 512: 39-46, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29054005

RESUMO

The efficient separation of scheelite from calcium-bearing minerals, especially calcite, remains a challenge in practice. In this work, a novel reagent scheme incorporating a depressant of sodium hexametaphosphate (SHMP) and a collector mixture of octyl hydroxamic acid (HXMA-8) and sodium oleate (NaOl) was employed in both single and mixed binary mineral flotation, and it proved to be highly effective for the separation. Furthermore, the role of the pH value in the separation was evaluated. Additionally, the mechanism of the selective separation was investigated systemically via zeta potential measurements, fourier transform infrared (FTIR) spectroscopy analysis, X-ray photoelectron (XPS) spectroscopy analysis and crystal chemistry calculations. It turns out that the selective chemisorption of SHMP on calcite (in the form of complexation between H2PO4-/HPO42- and Ca2+) over scheelite is ascribed to the stronger reactivity and higher density of Ca ions on the commonly exposed surfaces of calcite minerals. The intense adsorption of HXMA-8 on scheelite over calcite due to the match of the OO distances in WO42- of scheelite and CONHOH of HXMA-8 holds the key to the successful separation. We were also interested in warranting the previous claim that NaOl is readily adsorbed on both minerals via chemisorption. Our results provided valuable insights into the application of mixed collectors and an effective depressant for flotation separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...