Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(1): 703-712, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38133597

RESUMO

Two-dimensional ferromagnetic materials (2D-FMs) are expected to become ideal candidates for low-power, high-density information storage in next-generation spintronics devices due to their atomically ultrathin and intriguing magnetic properties. However, 2D-FMs with room-temperature Curie temperatures (Tc) are still rarely reported, which greatly hinders their research progress and practical applications. Herein, ultrathin Cu-doped Cr7Te8 FMs were successfully prepared and can achieve above-room-temperature ferromagnetism with perpendicular magnetic anisotropy via a facile chemical vapor deposition (CVD) method, which can be controlled down to an atomic thin layer of ∼3.4 nm. STEM-EDX quantitative analysis shows that the proportion of Cu to metal atoms is ∼5%. Moreover, based on the anomalous Hall effect (AHE) measurements in a six-terminal Hall bar device without any encapsulation as well as an out-of-plane magnetic field, the maximum Tc achieved ∼315 K when the thickness of the sample is ∼28.8 nm; even the ultrathin 7.6 nm sample possessed a near-room-temperature Tc of ∼275 K. Meanwhile, theoretical calculations elucidated the mechanism of the ferromagnetic enhancement of Cu-doped Cr7Te8 nanosheets. More importantly, the ferromagnetism of CVD-synthesized Cu-doped CrSe nanosheets can also be maintained above room temperature. Our work broadens the scope on room-temperature ferromagnets and their heterojunctions, promoting fundamental research and practical applications in next-generation spintronics.

2.
Nat Commun ; 14(1): 4406, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479692

RESUMO

Single-crystalline high-κ dielectric materials are desired for the development of future two-dimensional (2D) electronic devices. However, curent 2D gate insulators still face challenges, such as insufficient dielectric constant and difficult to obtain free-standing and transferrable ultrathin films. Here, we demonstrate that ultrathin Bi2SiO5 crystals grown by chemical vapor deposition (CVD) can serve as excellent gate dielectric layers for 2D semiconductors, showing a high dielectric constant (>30) and large band gap (~3.8 eV). Unlike other 2D insulators synthesized via in-plane CVD on substrates, vertically grown Bi2SiO5 can be easily transferred onto other substrates by polymer-free mechanical pressing, which greatly facilitates its ideal van der Waals integration with few-layer MoS2 as high-κ dielectrics and screening layers. The Bi2SiO5 gated MoS2 field-effect transistors exhibit an ignorable hysteresis (~3 mV) and low drain induced barrier lowering (~5 mV/V). Our work suggests vertically grown Bi2SiO5 nanoflakes as promising candidates to improve the performance of 2D electronic devices.

3.
Small Methods ; 7(9): e2300177, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37287373

RESUMO

Owing to rapid property degradation after ambient exposure and incompatibility with conventional device fabrication process, electrical transport measurements on air-sensitive 2D materials have always been a big issue. Here, for the first time, a facile one-step polymer-encapsulated electrode transfer (PEET) method applicable for fragile 2D materials is developed, which showed great advantages of damage-free electrodes patterning and in situ polymer encapsulation preventing from H2 O/O2 exposure during the whole electrical measurements process. The ultrathin SmTe2 metals grown by chemical vapor deposition (CVD) are chosen as the prototypical air-sensitive 2D crystals for their poor air-stability, which will become highly insulating when fabricated by conventional lithographic techniques. Nevertheless, the intrinsic electrical properties of CVD-grown SmTe2 nanosheets can be readily investigated by the PEET method instead, showing ultralow contact resistance and high signal/noise ratio. The PEET method can be applicable to other fragile ultrathin magnetic materials, such as (Mn,Cr)Te, to investigate their intrinsic electrical/magnetic properties.

4.
ACS Nano ; 17(11): 10783-10791, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37259985

RESUMO

The development of two-dimensional (2D) electronics is always accompanied by the discovery of 2D semiconductors with high mobility and specific crystal structures, which may bring revolutionary breakthrough on proof-of-concept devices and physics. Here, Bi3O2.5Se2, a 2D bismuth oxyselenide semiconductor with non-neutral layered crystal structure is discovered. Ultrathin Bi3O2.5Se2 films are readily synthesized by chemical vapor deposition, displaying tunable band gaps and high room-temperature field-effect mobility of >220 cm2 V-1 s-1. Moreover, the as-synthesized Bi3O2.5Se2 nanoplates were fabricated into top-gated transistors with a simple device configuration, whose carrier density can be reversibly regulated in the range of 1014 cm-2 just by a facile method of electrostatic doping at room temperature. These features enable it to be functionalized into nonvolatile synaptic transistors with ultralow operating energy consumption (∼0.5 fJ), high repeatability, low operating voltage (0.1 V), and long retention time. Our work extends the family of bismuth oxyselenide 2D semicondutors.

5.
ACS Nano ; 16(11): 19439-19450, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36288432

RESUMO

A 2D van der Waals (vdW) magnet can get rid of the constraints of lattice matching and compatibility and then create a variety of vdW heterostructures, which provides a opportunity for spintronic devices. However, the ability to reliably exfoliate large, high-quality vdW ferromagnetic Fe3GeTe2 (FGT) nanoflakes in scaled-up production is severely limited. Herein, an efficient and stable three-stage sonication-assisted liquid-phase exfoliation was developed for mass preparation of high-structural-integrity few- and single-layer FGT nanoflakes with a greatly enhanced intrinsic exchange bias. The three stages include slicing crystals, weakening interlayer vdW forces, and using ultrasonic cavitation. The highest yield of FGT nanoflakes is 22.3 wt % with single layers accounting for 6%. The size is controllable, and several micrometers, tens of micrometers, and a maximum of 103 µm are available. The 200 mg level output has overcome the limitations of mechanical exfoliation and molecular beam epitaxy in economically amplificated production. An intrinsic exchange bias is observed in the restacked nanoflakes due to the magnetic proximity on the interface of the FGT/natural surface oxide layer. The material reaches 578 Oe (2 K) and 2300 Oe after further oxidation, at least 250% higher than other precisely tailored vdW magnetic heterostructures. In addition, the unusual semiconductivity of the liquid-phase exfoliated FGT nanoflakes is reported. This work skillfully utilizes oxidation to enhance the potential of FGT for large-scale spintronics, optoelectronics, efficient data storage, and various extended applications, and it is beneficial for exfoliating other promising magnetic vdW materials.

6.
Nano Lett ; 22(18): 7659-7666, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069426

RESUMO

Bi2O2Te has the smallest effective mass and preferable carrier mobility in the Bi2O2X (X = S, Se, Te) family. However, compared to the widely explored Bi2O2Se, the studies on Bi2O2Te are very rare, probably attributed to the lack of efficient ways to achieve the growth of ultrathin films. Herein, ultrathin Bi2O2Te crystals were successfully synthesized by a trace amount of O2-assisted chemical vapor deposition (CVD) method, enabling the observation of ultrahigh low-temperature Hall mobility of >20 000 cm2 V-1 s-1, pronounced Shubnikov-de Haas quantum oscillations, and small effective mass of ∼0.10 m0. Furthermore, few nm thick CVD-grown Bi2O2Te crystals showed high room-temperature Hall mobility (up to 500 cm2 V-1 s-1) both in nonencapsulated and top-gated device configurations and preserved the intrinsic semiconducting behavior with Ion/Ioff ∼ 103 at 300 K and >106 at 80 K. Our work uncovers the veil of semiconducting Bi2O2Te with high mobility and brings new blood into Bi2O2X family.


Assuntos
Bismuto , Doenças Cardiovasculares , Bismuto/química , Gases/química , Humanos , Tamanho da Partícula , Telúrio/química
7.
Chem Soc Rev ; 49(4): 1109-1143, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31939973

RESUMO

As star material, perovskites have been widely used in the fields of optics, photovoltaics, electronics, magnetics, catalysis, sensing, etc. However, some inherent shortcomings, such as low efficiency (power conversion efficiency, external quantum efficiency, etc.) and poor stability (against water, oxygen, ultraviolet light, etc.), limit their practical applications. Downsizing the materials into nanostructures and incorporating rare earth (RE) ions are effective means to improve their properties and broaden their applications. This review will systematically summarize the key points in the design, synthesis, property improvements and application expansion of RE-containing (including both RE-based and RE-doped) halide and oxide perovskite nanomaterials (PNMs). The critical factors of incorporating RE elements into different perovskite structures and the rational design of functional materials will be discussed in detail. The advantages and disadvantages of different synthesis methods for PNMs will be reviewed. This paper will also summarize some practical experiences in selecting suitable RE elements and designing multi-functional materials according to the mechanisms and principles of REs promoting the properties of perovskites. At the end of this review, we will provide an outlook on the opportunities and challenges of RE-containing PNMs in various fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...