Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e1801054, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29962042

RESUMO

Li metal is considered as an ideal anode for Li-based batteries. Unfortunately, the growth of Li dendrites during cycling leads to an unstable interface, a low coulombic efficiency, and a limited cycling life. Here, a novel approach is proposed to protect the Li-metal anode by using a uniform agarose film. This natural biopolymer film exhibits a high ionic conductivity, high elasticity, and chemical stability. These properties enable a fast Li-ion transfer and feasiblity to accomodate the volume change of Li metal, resulting in a dendrite-free anode and a stable interface. Morphology characterization shows that Li ions migrate through the agarose film and then deposit underneath it. A full cell with the cathode of LiFPO4 and an anode contaning the agarose film exhibits a capacity retention of 87.1% after 500 cycles, much better than that with Li foil anode (70.9%) and Li-deposited Cu anode (5%). This study provides a promising strategy to eliminate dendrites and enhance the cycling ability of lithium-metal batteries through coating a robust artificial film of natural biopolymer on lithium-metal anode.

2.
ACS Appl Mater Interfaces ; 10(16): 13499-13508, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29616554

RESUMO

A composite consisting of cobalt and graphitic porous carbon (Co@GC-PC) is synthesized from bimetallic metal-organic frameworks and employed as the sulfur host for high-performance Li-S batteries. Because of the presence of a large surface area (724 m2 g-1) and an abundance of macro-/mesopores, the Co@GC-PC electrode is able to alleviate the debilitating effect originating from the volume expansion/contraction of sulfur species during the cycling process. Our in situ UV/vis analysis indicates that the existence of Co@GC-PC promotes the adsorption of polysulfides during the discharge process. Density functional theory calculations show a strong interaction between Co and Li2S and a low decomposition barrier of Li2S on Co(111), which is beneficial to the following Li2S oxidation in the charge process. As a result, at 0.2C, the discharge capacity of the S/Co@GC-PC cathode is stabilized at 790 mAh g-1 after 220 cycles, much higher than that of a carbon-based cathode, which delivers a discharge capacity of 188 mAh g-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...