Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931147

RESUMO

Nitrogen (N) is an essential macronutrient for crop growth; therefore, N deficit can greatly limit crop growth and production. In the North China Plain (NCP), winter wheat (Triticum aestivum L.) is one of the main food crops, and its yield has increased from approximately 4000 kg ha-1 to 6000 kg ha-1 in the last two decades. Determining the proper N application rates at different growth stages and in all seasons is very important for the sustainable and high production of wheat in the NCP. A field experiment with five N application rates (250, 200, 150, 100, and 40 kgN·ha-1, designated as N250, N200, N150, N100, and N40, respectively) was conducted during the 2017-2018 and 2018-2019 winter wheat seasons to investigate the effects of the N application rate on water- and fertilizer-utilization efficiency and on the crop growth and yield of winter wheat under sprinkler fertigation conditions. The results showed that in the N application range of 40-200 kg ha-1, crop yield and water- and fertilizer-use efficiencies increased as the N application rate increased; however, further increases in the N application rate (from N200 to N250) did not have additional benefits. The N uptake after regreening of winter wheat linearly increased with crop growth. Considering the wheat yield and N-use efficiency, the recommended optimal N application rate was 200 kg ha-1, and the best topdressing strategy was equal amounts of N applied at the regreening, jointing, and grain-filling stages. The results of this study will be useful for optimizing field N management to achieve high wheat yield production in the NCP and in regions with similar climatic and soil environment conditions.

2.
ACS Appl Mater Interfaces ; 15(15): 19241-19249, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37029737

RESUMO

Metal-organic frameworks (MOFs) are promising candidates for the advanced membrane materials based on their diverse structures, modifiable pore environment, precise pore sizes, etc. Nevertheless, the use of supports and large amounts of solvents in traditional solvothermal synthesis of MOF membranes is considered inefficient, costly, and environmentally problematic, coupled with challenges in their scalable manufacturing. In this work, we report a solvent-free space-confined conversion (SFSC) approach for the fabrication of a series of free-standing MOF (ZIF-8, Zn(EtIm)2, and Zn2(BIm)4) membranes. This approach excludes the employment of solvents and supports that require tedious pretreatment and, thus, makes the process more environment-friendly and highly efficient. The free-standing membranes feature a robust and unique architecture, which comprise dense surface layers and highly porous interlayer with large amounts of irregular-shaped micron-scale pore cavities, inducing satisfactory H2/CO2 selectivities and exceptional H2 permeances. The ZIF-8 membrane affords a considerable H2 permeance of 2653.7 GPU with a competitive H2/CO2 selectivity of 17.1, and the Zn(EtIm)2 membrane exhibits a high H2/CO2 selectivity of 22.1 with an excellent H2 permeance (6268.7 GPU). The SFSC approach potentially provides a new pathway for preparing free-standing MOF membranes under solvent-free conditions, rendering it feasible for scale-up production of membrane materials for gas separation.

3.
Macromol Rapid Commun ; 44(11): e2200774, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36520529

RESUMO

The uniquely tunable nature of covalent organic frameworks (COFs), whose pore size and stability can be controlled by choosing diverse organic building blocks and linkage types, makes COFs potential candidates for the membrane separation. Therefore, the preparation of membranes with effective separation efficiency based on COFs has aroused great interest among researchers. Although solvothermal approach has been the most popular method for the preparation of COF membranes, fabricating COF membranes at room temperature (RT) will provide a simple and captivating strategy for separation membranes. Herein, a P-COF membrane on porous alumina substrate at RT, showing 99.7% rejection of rhodamine B and excellent water permeance up to 52 L m-2 h-1 bar-1 , which can effectively purify wastewater is successfully obtained. P-COF is directly grown on alumina to form the composite membrane, which enhances the mechanical strength of COF membrane and avoids the risk of damaging the membrane structure during the transfer process of self-standing membrane. Moreover, P-COF membrane is grown at RT, which is more energy efficient than the conventional solvothermal method. Thus, it is of great significance to obtain COF membranes with excellent nanofiltration performance in a simple and mild condition to alleviate environmental and energy concerns.


Assuntos
Estruturas Metalorgânicas , Temperatura , Membranas , Óxido de Alumínio , Porosidade
4.
Int J Mol Sci ; 20(19)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554290

RESUMO

Grape hyacinth (Muscari spp.) is a popular ornamental plant with bulbous flowers noted for their rich blue color. Muscari species have been thought to accumulate delphinidin and cyanidin rather than pelargonidin-type anthocyanins because their dihydroflavonol 4-reductase (DFR) does not efficiently reduce dihydrokaempferol. In our study, we clone a novel DFR gene from blue flowers of Muscari. aucheri. Quantitative real-time PCR (qRT-PCR) and anthocyanin analysis showed that the expression pattern of MaDFR had strong correlations with the accumulation of delphinidin, relatively weak correlations with cyanidin, and no correations with pelargonidin. However, in vitro enzymatic analysis revealed that the MaDFR enzyme can reduce all the three types of dihydroflavonols (dihydrokaempferol, dihydroquercetin, and dihydromyricetin), although it most preferred dihydromyricetin as a substrate to produce leucodelphinidin, the precursor of blue-hued delphinidin. This indicated that there may be other functional genes responsible for the loss of red pelargonidin-based pigments in Muscari. To further verify the substrate-specific selection domains of MaDFR, an assay of amino acid substitutions was conducted. The activity of MaDFR was not affected whenever the N135 or E146 site was mutated. However, when both of them were mutated, the catalytic activity of MaDFR was lost completely. The results suggest that both the N135 and E146 sites are essential for the activity of MaDFR. Additionally, the heterologous expression of MaDFR in tobacco (Nicotiana tabacum) resulted in increasing anthocyanin accumulation, leading to a darker flower color, which suggested that MaDFR was involved in color development in flowers. In summary, MaDFR has a high preference for dihydromyricetin, and it could be a powerful candidate gene for genetic engineering for blue flower colour modification. Our results also make a valuable contribution to understanding the basis of color variation in the genus Muscari.


Assuntos
Oxirredutases do Álcool/genética , Antocianinas/biossíntese , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Vitis/genética , Vitis/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas , Flores/genética , Mutagênese Sítio-Dirigida , Fenótipo , Filogenia , Pigmentação , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes , Análise de Sequência de DNA
5.
Chem Commun (Camb) ; 55(24): 3505-3508, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30839044

RESUMO

A new and robust ZIF membrane was successfully prepared and evaluated for dye removal capacity. Benefitting from its favourable pore structure and thin selective layer, this ZIF membrane showed excellent removal efficiency for a variety of dyes, with rejection rates of over 99.8% and high water flux up to ∼100 L m-2 h-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...