Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 250: 121072, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150858

RESUMO

Sewage sludge (SS) pyrolysis to produce biochar is a vital approach for treating and utilizing SS, while reducing the carbon footprint of SS disposal. However, the high inorganic content in SS results in low carbon content and underdeveloped pore structure of biochar prepared under inert atmospheres. There is a significant risk of secondary pollutant emissions, including CO2, SO2, and NOx. In this study, we propose an innovative approach that utilizes excess molten salts, specifically a Li-Na-K molten carbonate (MC) and a Li-Na-K molten chloride (MCH), to create a medium-temperature liquid phase reaction environment (500 °C) for SS pyrolysis. This environment promotes the functional enhancement of biochar (SSB-MC and SSB-MCH) and in-situ absorption of secondary pollutants. The pore structure of SSB-MC and SSB-MCH are greatly optimized. Thanks to the dissolution of calcium-silicon-aluminum-based minerals by molten salt, the carbon content is also significantly increased. The increased specific surface area and surface-enriched functional groups (O, N, P, etc.) of SSB-MC result in greatly enhanced adsorption performance for Rhodamine B (27.9 to 89.1 mg g-1). SSB-MCH, due to the increased iron and phosphorus doping, also exhibits enhanced Fenton oxidation capability. Life cycle assessments demonstrate that the molten salt processes effectively reduce the carbon footprint, energy consumption, and environmental impact.


Assuntos
Poluentes Ambientais , Esgotos , Esgotos/química , Águas Residuárias , Pegada de Carbono , Carvão Vegetal/química , Carbono , Cloreto de Sódio , Carbonatos
2.
Chemosphere ; 317: 137929, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682641

RESUMO

Sewage sludge (SS) is a frequent and challenging issue for countries with big populations, due to its massive output, significant hazard potential, and challenging resource utilization. Pyrolysis can simultaneously realize the reduction, harmlessness and recycling of SS. Co-pyrolysis offers a wide range of potential in terms of increasing product quality and immobilizing heavy metals (HMs), thanks to its capacity to use additives to address the mismatch between SS characteristics and pyrolysis. High-value utilization potential of SS biochar is the key to evaluating the advancement of treatment technology. A further requirement for using biochar resources is the immobilization and bioavailability reduction of HMs. Due to the catalytic and synergistic effects in the co-pyrolysis process, co-pyrolysis SS biochar exhibits enhanced functionality and has been applied in soil improvement, pollutant adsorption and catalytic reactions. This review focuses on the research progress of different additives in improving the functionality of biochar and influencing the behavior of HMs. The key limitation and challenges in SS co-pyrolysis are then discussed. Future research prospects are detailed from seven perspectives, including pyrolysis process optimization, co-pyrolysis additive selection, catalytic mechanism research of process and product, biochar performance improvement and application field expansion, cooperative immobilization of HMs, and life cycle assessment. This review will offer recommendations and direction for future research paths, while also assist pertinent researchers in swiftly understanding the current state of SS pyrolysis research field.


Assuntos
Metais Pesados , Esgotos , Pirólise , Carvão Vegetal
3.
Nanomaterials (Basel) ; 12(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35808107

RESUMO

Dye adsorption by magnetic modified biochar has now received growing interest due to its excellent adsorption performance and facile separation for recycling. In this study, nano iron oxide-modified biochar was fabricated via the successive hydrothermal-pyrolyzing method using Chlorella vulgaris (Cv) and FeSO4·7H2O as raw materials, and its adsorption on Rhodamine B (RhB) in aqueous solution was studied. Multiple techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS) were employed to comprehensively characterize the structure, morphology and physicochemical properties of the adsorbent. The as-synthesized nano iron oxide-modified biochar (CBC-Fe(II)) exhibited a large surface area (527.6 m2/g) and high magnetic saturation value (13.7 emu/g) to facilitate magnetic separation. Compared with CBC and CBC-Fe(III), CBC-Fe(II) exhibited superior adsorption ability towards RhB in aqueous solution, with a maximum adsorption capacity of 286.4 mg/g. The adsorption process of RhB onto CBC-Fe(II) was well described by the pseudo-second-order kinetic model and Langmuir isotherm model, indicating monolayer chemisorption behaviors for the adsorption system. Facile preparation, great adsorption performance and magnetic recovery properties endow CBC-Fe(II) to be a promising adsorbent for dye removal.

4.
ACS Appl Mater Interfaces ; 11(48): 45290-45300, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31722178

RESUMO

For the first time, continuous polycrystalline UiO-66-NH2 thin film supported by a cross-linked Matrimid substrate was successfully fabricated via in situ solvothermal synthesis at room temperature for organic solvent nanofiltration. The integrated structure of the formed UiO-66-NH2 selective layer was inferred by various characterizations including X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. We have demonstrated that pretreatment of the substrate by an organic ligand, the number of solvothermal synthesis cycles, and the reaction time play important roles in MOF film formation. The newly developed UiO-66-NH2 membrane possesses high surface hydrophobicity and mean pore size of 0.89 nm in diameter. It shows an exceptional rejection of 96.33% to Rose Bengal with moderate ethanol permeance of 0.88 L m-2 h-1 bar-1. Benefiting from the extraordinary chemical stability of Zr-MOF crystals, the UiO-66-NH2 membrane shows excellent stability in different solvents, implying their great potential for real applications. This work provides useful insights into the fabrication of continuous UiO-66-type MOF membranes on polymeric substrates, which are very promising in practical separations involving organic solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...