Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 604, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679770

RESUMO

BACKGROUND: Neuroblastoma (NB) and pheochromocytoma/paraganglioma (PHEO/PGL) are neuroendocrine tumors. Imaging of these neoplasms is performed by scintigraphy after injection of radiolabeled meta-iodobenzylguanidine (mIBG), a norepinephrine analog taken up by tumoral cells through monoamine transporters. The pharmacological induction of these transporters is a promising approach to improve the imaging and therapy (theranostics) of these tumors. METHODS: Transporters involved in mIBG internalization were identified by using transfected Human Embryonic Kidney (HEK) cells. Histone deacetylase inhibitors (HDACi) and inhibitors of the PI3K/AKT/mTOR pathway were tested in cell lines to study their effect on mIBG internalization. Studies in xenografted mice were performed to assess the effect of the most promising HDACi on 123I-mIBG uptake. RESULTS: Transfected HEK cells demonstrated that the norepinephrine and dopamine transporter (NET and DAT) avidly internalizes mIBG. Sodium-4-phenylbutyrate (an HDACi), CUDC-907 (a dual HDACi and PI3K inhibitor), BGT226 (a PI3K inhibitor) and VS-5584 and rapamycin (two inhibitors of mTOR) increased mIBG internalization in a neuroblastoma cell line (IGR-NB8) by 2.9-, 2.1-, 2.5-, 1.5- and 1.3-fold, respectively, compared with untreated cells. CUDC-907 also increased mIBG internalization in two other NB cell lines and in one PHEO cell line. We demonstrated that mIBG internalization occurs primarily through the NET. In xenografted mice with IGR-NB8 cells, oral treatment with 5 mg/kg of CUDC-907 increased the tumor uptake of 123I-mIBG by 2.3- and 1.9-fold at 4 and 24 h post-injection, respectively, compared to the untreated group. CONCLUSIONS: Upregulation of the NET by CUDC-907 lead to a better internalization of mIBG in vitro and in vivo.


Assuntos
Neuroblastoma , Tumores Neuroendócrinos , Humanos , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , 3-Iodobenzilguanidina/farmacologia , 3-Iodobenzilguanidina/uso terapêutico , Fosfatidilinositol 3-Quinases , Medicina de Precisão , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/tratamento farmacológico
2.
Biomater Adv ; 134: 112714, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35581094

RESUMO

Targeted drug delivery has become attention in chemotherapy during the last decade. The principle of chemotherapy seeks maximum effect to the desired site and the minimum impact to other undesired sites of action. The nanoparticulated drug delivery system progressed a lot in this aspect in the last twenty years. Plant-derived natural products and their semisynthetic analogues boosted chemotherapy through their excellent mechanistic approach to killing cancer cells. Keeping in mind the available molecular targets in colorectal carcinoma (CRC), in this article, we proposed a peptide conjugated novel polymeric nanoparticle to deliver garcinol against colorectal carcinoma. Integrin binding peptide iRGD, sequence c(CRGDKGPDC), has been selected as a targeting moiety, as most CRC overexpress integrins. We encapsulated garcinol in biodegradable polymeric nanoparticle (PLGA)-conjugated with iRGD peptide on the particles' surface, and analyzed its (iRGD-GAR-NP's) in vitro and in vivo antineoplastic potential against CRC in a comparative way with gracinol (GAR) and garcinol-loaded PLGA nanoparticles (GAR-NP). In vitro cellular studies on human CRC cell lines, HCT116 and HT-29, revealed the superior cytotoxic potential of iRGD-GAR-NP over GAR and GAR-NP. The IC50 value on HCT116 cells was reduced by 2.3 times compared to GAR upon the application of iRGD-GAR-NP. At equivalent doses, iRGD-GAR-NP induced higher apoptosis in HCT116 cells and caused blockage of cell cycle at G0/G1 phase of the same. iRGD-GAR-NP increased the apoptotic population of HCT116 cells by 2.5 times compared to GAR. In vivo biodistribution study uncoiled the ability of GAR-NP and iRGD-GAR-NP to accumulate in the colons of dimethyl hydrazine-induced CRC-bearing Sprague-Dawely (SD) rats. In vivo antitumor efficacy study demonstrated the better effect of iRGD-GAR-NP to reduce CRC tumor progression in experimental animals. The survival rate of animals was also increased by 166% in the case of iRGD-GAR-NP compared to CRC-bearing animals received no treatment.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Nanopartículas , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Humanos , Oligopeptídeos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Polímeros/uso terapêutico , Ratos , Terpenos , Distribuição Tecidual
3.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379299

RESUMO

Recently, radiolabelled antagonists targeting somatostatin receptors subtype 2 (SST2) in neuroendocrine neoplasms demonstrated certain superior properties over agonists. Within the ERA-PerMED project "TECANT" two 99mTc-Tetramine (N4)-derivatized SST2 antagonists (TECANT-1 and TECANT-2) were studied for the selection of the best candidate for clinical translation. Receptor-affinity, internalization and dissociation studies were performed in human embryonic kidney-293 (HEK293) cells transfected with the human SST2 (HEK-SST2). Log D, protein binding and stability in human serum were assessed. Biodistribution and SPECT/CT studies were carried out in nude mice bearing HEK-SST2 xenografts, together with dosimetric estimations from mouse-to-man. [99mTc]Tc-TECANT-1 showed higher hydrophilicity and lower protein binding than [99mTc]-TECANT-2, while stability was comparable. Both radiotracers revealed similar binding affinity, while [99mTc]Tc-TECANT-1 had higher cellular uptake (>50%, at 2 h/37 °C) and lower dissociation rate (<30%, at 2 h/37 °C). In vivo, [99mTc]Tc-TECANT-1 showed lower blood values, kidney and muscles uptake, whereas tumour uptake was comparable to [99mTc]Tc-TECANT-2. SPECT/CT imaging confirmed the biodistribution results, providing the best tumour-to-background image contrast for [99mTc]Tc-TECANT-1 at 4 h post-injection (p.i.). The estimated radiation dose amounted to approximately 6 µSv/MBq for both radiotracers. This preclinical study provided the basis of selection of [99mTc]Tc-TECANT-1 for clinical translation of the first 99mTc-based SST2 antagonist.

4.
Int J Nanomedicine ; 14: 8073-8094, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632019

RESUMO

BACKGROUND AND OBJECTIVE: Targeted drug delivery of nanoparticles decorated with site-specific recognition ligands is of considerable interest to minimize cytotoxicity of chemotherapeutics in the normal cells. The study was designed to develop CD-340 antibody-conjugated polylactic-co-glycolic acid (PLGA) nanoparticles loaded with a highly water-soluble potent anticancer drug, doxorubicin (DOX), to specifically deliver entrapped DOX to breast cancer cells. METHODS: The study showed how to incorporate water-soluble drug in a hydrophobic PLGA (85:15) based matrix which otherwise shows poor drug loading due to leaching effect. The optimized formulation was covalently conjugated to anti-human epidermal growth factor receptor-2 (HER2) antibody (CD-340). Surface conjugation of the ligand was assessed by flow cytometry, confocal microscopy, and gel electrophoresis. Selectivity and cytotoxicity of the experimental nanoparticles were tested on human breast cancer cells SKBR-3, MCF-7, and MDA-MB-231. Both CD-340-conjugated and unconjugated nanoparticles were undergone in vitro and in vivo characterization. RESULT: Higher level of incorporation of DOX (8.5% W/W), which otherwise shows poor drug loading due to leaching effect of the highly water-soluble drug, was seen in this method. In HER2-overexpressing tumor xenograft model, radiolabeled antibody-conjugated nanoparticles showed preferentially more of the formulation accumulation in the tumor area when compared to the treatments with the unconjugated one or with the other control groups of mice. The ligand conjugated nanoparticles showed considerable potential in reduction of tumor growth and cardiac toxicity of DOX in mice, a prominent side-effect of the drug. CONCLUSION: In conclusion, CD-340-conjugated PLGA nanoparticles containing DOX preferentially delivered encapsulated drug to the breast cancer cells and in breast tumor and reduced the breast tumor cells by apoptosis. Site-specific delivery of the formulation to neoplastic cells did not affect normal cells and showed a drastic reduction of DOX-related cardiotoxicity.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/uso terapêutico , Nanopartículas/química , Receptor ErbB-2/metabolismo , Carga Tumoral/efeitos dos fármacos , Animais , Anticorpos/metabolismo , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/sangue , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Cinética , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Distribuição Tecidual/efeitos dos fármacos
5.
Nanomedicine (Lond) ; 14(15): 2045-2065, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31368402

RESUMO

Aim: Garcinol (GAR)-loaded cationic nanoliposomes were developed to achieve potential antitumor efficacy on B16F10 melanoma cells in vitro and in vivo. Materials & methods: Two different phospholipids namely, distearoyl phosphatidylcholine (DSPC) and dipalmitoyl phosphatidylcholine (DPPC) were used in formulation to elucidate the difference in cellular uptake, cytotoxicity, in vivo tumor uptake (by scintigraphic imaging after technetium-99m radiolabeling) and therapeutic efficacy. Results: Different in vitro protocols, for example, MTT assay, apoptosis study, gene expression analysis, chromatin condensation and cytoskeleton breakdown analysis in B16F10 cell lines as well as scintigraphic analysis and tumor inhibition studies (B16F10 tumor xenograft model) revealed superiority of GAR-DPPC than GAR-DSPC and free GAR in melanoma prevention. Conclusion: Cationic nanoliposomal formulations could be a future medication for skin cancer treatment.


Assuntos
Antineoplásicos/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Terpenos/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Cátions/química , Linhagem Celular Tumoral , Lipossomos/química , Masculino , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Nanocápsulas/química , Terpenos/farmacocinética , Terpenos/uso terapêutico
6.
Nanomedicine (Lond) ; 13(23): 3009-3023, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30507340

RESUMO

AIM: Procaine that is able to reach the peripheral nervous system (PNS) was conjugated as a ligand with lipid nanovesicle and loaded with ribavirin (a broad spectrum antiviral drug incapable of entering the PNS on its own) to target the PNS with a dual-drug effect. MATERIALS & METHODS: Different physicochemical characterizations, Î³-scintigraphy and electromyography of the developed nanovesicle were conducted. RESULTS: Marked capability of the optimized radiolabeled formulation to target PNS was observed in rats. Electromyography signals were reduced after treatment with the formulation on conscious rats. CONCLUSION: The developed nanocarrier can deliver drug successfully at the PNS and reduce excitation of the nerve and thus give a better therapeutic option for treatment of various diseases and disorders of the PNS.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Nervos Periféricos/efeitos dos fármacos , Procaína/farmacologia , Ribavirina/farmacologia , Anestésicos Locais/farmacologia , Animais , Antivirais/farmacologia , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Quimioterapia Combinada/métodos , Etanolaminas/química , Lipídeos/química , Masculino , Tamanho da Partícula , Ratos Sprague-Dawley , Propriedades de Superfície , Distribuição Tecidual
7.
Medchemcomm ; 9(5): 812-826, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108970

RESUMO

The cytotoxic drug gemcitabine (GEM) has been conjugated to receptor-binding peptides to target melanoma tumors. A hexapeptide having a Lys-Gly-His-Lys sequence (pep-1), an octapeptide with an Arg-Gly-Asp-Lys-Gly-His-Lys sequence (pep-2), a GEM-conjugated Lys-Gly-His-Lys peptide (GEM-pep-3) and a GEM-conjugated Asp-Gly-Arg peptide (GEM-pep-4) were synthesized and characterized. In vitro uptake of fluorescently labeled GEM-pep-3 and GEM-pep-4 on B16F10 cells was investigated. Fluorescence microscopy studies demonstrated significant uptake of GEM-pep-3 in the B16F10 mouse melanoma cell line. The peptides and GEM-coupled peptides were radiolabeled with [99mTc(CO)3(H2O)3]+ and examined for in vitro cell binding in the B16F10 melanoma cell line and in vivo biodistribution and scintigraphic studies in a B16F10 melanoma tumor-bearing mice model. In vitro cellular uptake studies and biological evaluation confirmed significant deposition of GEM-pep-3 at the melanoma tumor site. The MTT assay depicted higher cytotoxic behaviour of GEM-pep-3 than free GEM. A considerable amount of cell apoptosis was also observed in B16F10 cells. Finally, the in vivo therapeutic efficacy study revealed a significant decrease in tumor growth in the GEM-pep-3-treated animal model. These studies reveal enough potentiality of GEM-pep-3 to treat melanoma and underline the need for further evaluation.

8.
Nanomedicine ; 14(6): 1905-1917, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29802937

RESUMO

Hepatocellular carcinoma (HCC) is one of the major causes of cancer related death globally. Apigenin, a dietary flavonoid, possesses anti-tumor activity against HCC cells in-vitro. Development, physicochemical characterization of apigenin loaded nanoparticles (ApNp), biodistribution pattern and pharmacokinetic parameters of apigenin upon intravenous administration of ApNp, and effect of ApNp treatment in rats with HCC were investigated. Apigenin loaded nanoparticles had a sustained drug release pattern and successfully reached the hepatic cancer cells in-vitro as well as in liver of carcinogenic animals. ApNp predominantly delayed the progress of HCC in chemical induced hepatocarcinogenesis in rats. Quantification of apigenin by liquid chromatography-mass spectroscopy (LC-MS/MS) showed that apigenin availability significantly increased in blood and liver upon ApNp treatment. Apigenin loaded nanoparticle delivery substantially controlled the severity of hepatocellular carcinoma and could be a future hope for lingering the survival in hepatic cancer patients.


Assuntos
Apigenina/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/administração & dosagem , Animais , Apigenina/química , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Masculino , Nanopartículas/química , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas
9.
Drug Deliv ; 25(1): 504-516, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29426257

RESUMO

Delivering highly water soluble drugs across blood-brain barrier (BBB) is a crucial challenge for the formulation scientists. A successful therapeutic intervention by developing a suitable drug delivery system may revolutionize treatment across BBB. Efforts were given here to unravel the capability of a newly developed fatty acid combination (stearic acid:oleic acid:palmitic acid = 8.08:4.13:1) (ML) as fundamental component of nanocarrier to deliver highly water soluble zidovudine (AZT) as a model drug into brain across BBB. A comparison was made with an experimentally developed standard phospholipid-based nanocarrier containing AZT. Both the formulations had nanosize spherical unilamellar vesicular structure with highly negative zeta potential along with sustained drug release profiles. Gamma scintigraphic images showed both the radiolabeled formulations successfully crossed BBB, but longer retention in brain was observed for ML-based formulation (MGF) as compared to soya lecithin (SL)-based drug carrier (SYF). Plasma and brain pharmacokinetic data showed less clearance, prolonged residence time, more bioavailability and sustained release of AZT from MGF in rats compared to those data of the rats treated with SYF/AZT suspension. Thus, ML may be utilized to successfully develop drug nanocarrier to deliver drug into brain across BBB, in a sustained manner for a prolong period of time and may provide an effective therapeutic strategy for many diseases of brain. Further, many anti-HIV drugs cannot cross BBB sufficiently. Hence, the developed formulation may be a suitable option to carry those drugs into brain for better therapeutic management of HIV.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Portadores de Fármacos/metabolismo , Feminino , Masculino , Nanopartículas/metabolismo , Ratos , Ratos Sprague-Dawley , Solubilidade , Água
10.
Nanomedicine (Lond) ; 13(5): 501-520, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29383985

RESUMO

AIM: Chitosan-coated polylactic-co-glycolic acid nanoparticles of voriconazole (VChNP) were developed to increase residence time and provide sustained drug release locally to treat recurrent lung-fungal infection. MATERIALS & METHODS: VChNP has been developed using a simple, unique technique and characterized. Pharmacokinetics, lung deposition with time and gamma imaging were conducted with optimized formulations. RESULTS: The deposition of fluorescein isothiocyanate-labeled VChNP in lung was confirmed by confocal microscopy. Gamma-scintigraphic images showed that Tc-99m-labeled VChNP had better pulmonary retention for longer period than that of noncoated formulation. Drastic improvement in pharmacokinetic profile of VChNP than noncoated formulation was observed. CONCLUSION: Thus, VChNP may be useful for effective pulmonary delivery with improved bioavailability. Such chitosan-coated nanoparticles may open up a new avenue for efficacious treatment of lung-fungal infection.


Assuntos
Antifúngicos/química , Quitosana/química , Portadores de Fármacos/química , Pneumopatias Fúngicas/tratamento farmacológico , Pulmão/metabolismo , Nanopartículas/química , Voriconazol/química , Administração por Inalação , Animais , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Disponibilidade Biológica , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Humanos , Masculino , Camundongos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Propriedades de Superfície , Distribuição Tecidual , Voriconazol/administração & dosagem , Voriconazol/farmacocinética
11.
Sci Rep ; 7(1): 530, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28373669

RESUMO

Garcinol (GAR) is a naturally occurring polyisoprenylated phenolic compound. It has been recently investigated for its biological activities such as antioxidant, anti-inflammatory, anti ulcer, and antiproliferative effect on a wide range of human cancer cell lines. Though the outcomes are very promising, its extreme insolubility in water remains the main obstacle for its clinical application. Herein we report the formulation of GAR entrapped PLGA nanoparticles by nanoprecipitation method using vitamin E TPGS as an emulsifier. The nanoparticles were characterized for size, surface morphology, surface charge, encapsulation efficiency and in vitro drug release kinetics. The MTT assay depicted a high amount of cytotoxicity of GAR-NPs in B16F10, HepG2 and KB cells. A considerable amount of cell apoptosis was observed in B16f10 and KB cell lines. In vivo cellular uptake of fluorescent NPs on B16F10 cells was also investigated. Finally the GAR loaded NPs were radiolabeled with technetium-99m with >95% labeling efficiency and administered to B16F10 melanoma tumor bearing mice to investigate the in vivo deposition at the tumor site by biodistribution and scintigraphic imaging study. In vitro cellular uptake studies and biological evaluation confirm the efficacy of the formulation for cancer treatment.


Assuntos
Emulsões/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Terpenos/química , Terpenos/farmacologia , Vitamina E/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Portadores de Fármacos , Liberação Controlada de Fármacos , Melanoma Experimental , Camundongos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Distribuição Tecidual , Difração de Raios X
12.
Cancer Biother Radiopharm ; 31(3): 110-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27093344

RESUMO

In recent years the authors have reported on (99m)Tc(CO)3-labeled peptides that serve as carriers for biomolecules or radiopharmaceuticals to the tumors. In continuation of that work they report the synthesis of a pentapeptide (Met-Phe-Phe-Gly-His; pep-1), a hexapeptide (Met-Phe-Phe-Asp-Gly-His; pep-2), and a tetrapeptide (Asp-Gly-Arg-His; pep-3) and the attachment of 3-amino-1,2,4-triazole to the ß carboxylic function of the aspartic acid unit of pep-2 and pep-3. The pharmacophores were radiolabeled in high yields with [(99m)Tc(CO)3(H2O)3](+) metal aqua ion, characterized for their stability in serum and saline, as well as in His solution, and found to be substantially stable. B16F10 cell line binding studies showed favorable uptake and internalization. In vivo behavior of the radiolabeled triazolyl peptides was assessed in mice bearing induced tumor. The (99m)Tc(CO)3-triazolyl pep-3 demonstrated rapid urinary clearance and comparatively better tumor uptake. Imaging studies showed visualization of the tumor using (99m)Tc(CO)3-triazolyl pep-3, but due to high abdominal background, low delineation occurred. Based on the results further experiments will be carried out for targeting tumor with triazolyl peptides.


Assuntos
Carcinoma de Ehrlich/diagnóstico , Integrina alfaVbeta3/metabolismo , Melanoma Experimental/diagnóstico , Oligopeptídeos/farmacocinética , Compostos de Organotecnécio/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Triazóis/química , Animais , Carcinoma de Ehrlich/metabolismo , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Oligopeptídeos/química , Compostos de Organotecnécio/química , Compostos Radiofarmacêuticos/química , Ratos , Distribuição Tecidual , Células Tumorais Cultivadas
13.
Nat Prod Commun ; 7(8): 989-90, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22978212

RESUMO

Eclipta alba (L.) Hassk is used traditionally in diabetes mellitus in India and the plant extract is reported to possess anti-diabetic activity. A bioactivity-guided isolation approach based on alpha-glucosidase inhibition was used to identify the constituents contributing towards the inhibition of the enzyme and probably contributing towards its anti-diabetic activity. Four echinocystic acid glycosides were thus isolated, of which eclalbasaponin VI, isolated from the n-butanol fraction, was found to be the most potent (IC50 54.2 +/- 1.3 microM). The compound is an uncompetitive type of inhibitor with Ki 26.1 microM. A quantitative estimation of the constituents was established using RP-HPLC.


Assuntos
Eclipta/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases , Glicosídeos/farmacologia , Cromatografia Líquida de Alta Pressão , Glicosídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...