Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 621(7978): 330-335, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37587345

RESUMO

Projected responses of ocean net primary productivity to climate change are highly uncertain1. Models suggest that the climate sensitivity of phytoplankton nutrient limitation in the low-latitude Pacific Ocean plays a crucial role1-3, but this is poorly constrained by observations4. Here we show that changes in physical forcing drove coherent fluctuations in the strength of equatorial Pacific iron limitation through multiple El Niño/Southern Oscillation (ENSO) cycles, but that this was overestimated twofold by a state-of-the-art climate model. Our assessment was enabled by first using a combination of field nutrient-addition experiments, proteomics and above-water hyperspectral radiometry to show that phytoplankton physiological responses to iron limitation led to approximately threefold changes in chlorophyll-normalized phytoplankton fluorescence. We then exploited the >18-year satellite fluorescence record to quantify climate-induced nutrient limitation variability. Such synoptic constraints provide a powerful approach for benchmarking the realism of model projections of net primary productivity to climate changes.


Assuntos
Modelos Climáticos , El Niño Oscilação Sul , Ferro , Clorofila/metabolismo , Mudança Climática , Fluorescência , Ferro/metabolismo , Nutrientes/metabolismo , Oceano Pacífico , Fitoplâncton/metabolismo , Proteômica , Radiometria , Imagens de Satélites
2.
Opt Express ; 30(10): 16553-16571, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221496

RESUMO

The exploitation of satellite remote sensing is expected to be a critical asset in monitoring floating and submerged plastic litter in all aquatic environments. However, robust retrieval algorithms still havel to be developed based on a full understanding of light interaction with plastic litter and the other optically active constituents of the atmosphere-water system. To this end, we performed laboratory-based hyperspectral reflectance measurements of submerged macroplastics under varying water clarity conditions (clear - 0 mg/L, moderate - 75 mg/L, very turbid - 321.3 mg/L) and submersion depths. This comprehensive optical dataset was used (i) to relate the plastic-related signal to submersion depth and turbidity parameters, and (ii) to investigate the top-of-atmosphere signal through full radiative transfer calculations. Simulated TOA radiation was used to explore the nominal pixel and spectral requirements based on WorldView-3, Sentinel-2, and Sentinel-3 missions with very high to moderate geo-spatial resolutions. Results showed that plastics remained detectable when submerged in the top ∼1 m of the water column regardless of water clarity conditions. At TOA, uncertainties attached to atmospheric correction were shown to be reasonable and acceptable for plastic detection purposes in the infrared part of the spectrum (> 700 nm). The impact of aerosols on the TOA signal was found to be complex as (i) over large plastic patches. The aerosols produced little impact on satellite observations mostly due to adjacency effects and (ii) optical signature from isolated/small extent plastic patches was critically altered suggesting the atmospheric transmittance should be accurately corrected for in plastic detection algorithms. The sensitivity analyses also revealed that the narrow band widths of Sentinel-3 did not improve detection performance compared to the WorldView-3 coarser band widths. It is proposed that high spatial resolution wavebands such as the pan-chromatic could be advantageously explored for submerged plastic monitoring applications.

3.
Opt Express ; 29(22): 35288-35298, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34808966

RESUMO

We present a direct and proxy-based approach to qualitatively and semi-quantitatively observe floating plastic litter in the Great Pacific Garbage Patch (GPGP) based on a survey in 2018 using very high geo-spatial resolution 8-waveband WorldView-3 imagery. A proxy for the plastics was defined as a waveband difference for anomalies in the top-of-the-atmosphere spectra. The anomalies were computed by subtracting spatially varying reflectance of the surrounding ocean water as background from the top-of-the-atmosphere reflectance. Spectral shapes and magnitude were also evaluated using a reference target of known plastics, The Ocean Cleanup System 001 Wilson. Presence of 'suspected plastics' was confirmed by the similarity in derived anomalies and spectral shapes with respect to the known plastics in the image as well as direct observations in the true color composites. The proposed proxy-based approach is a step towards future mapping techniques of suspected floating plastics with potential operational monitoring applications from the Sentinel-2 that recently started regular imaging over the GPGP that will be supported or validated by numerical solutions and net trawling survey.

4.
J Hazard Mater ; 406: 124290, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33390286

RESUMO

We present reflectance measurements collected from virgin and ocean-harvested plastics. Virgin plastics included high and low density polyethylene (HDPE, LDPE), polypropylene (PP) as well as polystyrene (PS). Ocean-harvested plastics were ropes, sheets, foam, pellets and fragmented items previously trawled from the North Pacific Garbage Patch. Nadir viewing angles and plastic pixel coverage were varied to advance our understanding of how reflectance shape and magnitude can be influenced by these parameters. We also investigated the effect of apparent colour of plastics on the measured reflectance from the ultraviolet (UV - 350 nm), visible, near to shortwave infrared (NIR, SWIR - 2500 nm). Statistical analyses indicated that the spectral reflectance of the plastics was significantly correlated to the percentage pixel coverage. There was no clear relationship between the reflectance observed and the viewing nadir angle but dampened materials seemed to be more isotropic (near-Lambertian) than their dry counterparts. A loss in reflectance was also determined between dry and wet plastics. Location of absorption features was not affected by the apparent colour of objects. In general, ocean-harvested plastics shared more identical absorption features (~960, 1215, 1440, 1732, 1920 nm) and had lower reflectance intensity compared to the virgin plastics (~980 nm). Prospects for satellite retrieval of plastic type and pixel plastic coverage are discussed based on Top-of-Atmosphere (TOA) signal simulated through radiative transfer computation using the documented plastic reflectances. Non-linear relationships between TOA reflectance and plastic coverage were observed depending on wavelength and plastic type. Most of the plastics analysed impact significantly the TOA signal but two plastic types did not produce strong signal at TOA (hard fragments, LDPE). Nevertheless, all plastic types produced detectable signals when observations were simulated within the sunglint direction. The measurements collected in this study are an extension to available high quality spectral reference libraries and can support further research in developing remote sensing algorithms for marine litter.

5.
Environ Sci Technol ; 52(20): 11699-11707, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30249095

RESUMO

Here, we present a proof-of-concept on remote sensing of ocean plastics using airborne shortwave infrared (SWIR) imagery. We captured red, green, and blue (RGB) and hyperspectral SWIR imagery with equipment mounted on a C-130 aircraft surveying the "Great Pacific Garbage Patch" at a height of 400 m and a speed of 140 knots. We recorded the position, size, color, and type (container, float, ghost net, rope, and unknown) of every plastic piece identified in the RGB mosaics. We then selected the top 30 largest items within each of our plastic type categories (0.6-6.8 m in length) to investigate SWIR spectral information obtained with a SASI-600 imager (950-2450 nm). Our analyses revealed unique SWIR spectral features common to plastics. The SWIR spectra obtained ( N = 118 items) were quite similar both in magnitude and shape. Nonetheless, some spectral variability was observed, likely influenced by differences in the object optical properties, the level of water submersion, and an intervening atmosphere. Our simulations confirmed that the ∼1215 and ∼1732 nm absorption features have potential applications in detecting ocean plastics from spectral information. We explored the potential of SWIR remote sensing technology for detecting and quantifying ocean plastics, thus provide relevant information to those developing better monitoring solutions for ocean plastic pollution.


Assuntos
Resíduos de Alimentos , Plásticos , Atmosfera , Oceanos e Mares , Tecnologia de Sensoriamento Remoto
6.
Int J Environ Res Public Health ; 12(12): 16096-109, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26694444

RESUMO

Societal awareness of changes in the environment and climate has grown rapidly, and there is a need to engage citizens in gathering relevant scientific information to monitor environmental changes due to recognition that citizens are a potential source of critical information. The apparent colour of natural waters is one aspect of our aquatic environment that is easy to detect and an essential complementary optical water quality indicator. Here we present the results and explore the utility of the Forel-Ule colour index (FUI) scale as a proxy for different properties of natural waters. A FUI scale is used to distinguish the apparent colours of different natural surface water masses. Correlation analysis was completed in an effort to determine the constituents of natural waters related to FUI. Strong correlations with turbidity, Secchi-disk depth, and coloured dissolved organic material suggest the FUI is a good indicator of changes related to other constituents of water. The increase in the number of tools capable of determining the FUI colours, (i) ocean colour remote sensing products; (ii) a handheld scale; and (iii) a mobile device app, make it a versatile relative measure of water quality. It has the potential to provide higher spatial and temporal resolution of data for a modernized classification of optical water quality. This FUI colour system has been favoured by several scientists in the last century because it is affordable and easy to use and provides indicative information about the colour of water and the water constituents producing that colour. It is therefore within the scope of a growing interest in the application and usefulness of basic measurement methodologies with the potential to provide timely benchmark information about the environment to the public, scientists and policymakers.


Assuntos
Classificação , Cor/normas , Qualidade da Água/normas , Água/química , Água/normas , Crowdsourcing , Monitoramento Ambiental
7.
Opt Express ; 21(13): 15938-50, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842380

RESUMO

The need to obtain ocean color essential climate variables (OC-ECVs) using hyperspectral technology has gained increased interest in recent years. Assessing ocean color on a large scale in high latitude environments using satellite remote sensing is constrained by polar environmental conditions. Nevertheless, on a small scale we can assess ocean color using above-water and in-water remote sensing. Unfortunately, above-water remote sensing can only determine apparent optical properties leaving the sea surface and is susceptible to near surface environmental conditions for example sky and sunglint. Consequently, we have to rely on accurate in-water remote sensing as it can provide both synoptic inherent and apparent optical properties of seawater. We use normalized water leaving radiance LWN or the equivalent remote sensing reflectance RRS from 27 stations to compare the differences in above-water and in-water OC-ECVs. Analysis of above-water and in-water RRS spectra provided very good match-ups (R2 > 0.97, MSE < 1.8*10(-7)) for all stations. The unbiased percent differences (UPD) between above-water and in-water approaches were determined at common OC-ECVs spectral bands (410, 440, 490, 510 and 555) nm and the classic band ratio (490/555) nm. The spectral average UPD ranged (5 - 110) % and band ratio UPD ranged (0 - 12) %, the latter showing that the 5% uncertainty threshold for ocean color radiometric products is attainable. UPD analysis of these stations West of Greenland, Labrador Sea, Denmark Strait and West of Iceland also suggests that the differences observed are likely a result of environmental and instrumental perturbations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...