Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 40(7): 1035-1041, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35347328

RESUMO

Whole-genome sequencing (WGS) can identify variants that cause genetic disease, but the time required for sequencing and analysis has been a barrier to its use in acutely ill patients. In the present study, we develop an approach for ultra-rapid nanopore WGS that combines an optimized sample preparation protocol, distributing sequencing over 48 flow cells, near real-time base calling and alignment, accelerated variant calling and fast variant filtration for efficient manual review. Application to two example clinical cases identified a candidate variant in <8 h from sample preparation to variant identification. We show that this framework provides accurate variant calls and efficient prioritization, and accelerates diagnostic clinical genome sequencing twofold compared with previous approaches.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Sequenciamento Completo do Genoma/métodos
4.
PLoS One ; 14(5): e0216709, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31095620

RESUMO

The ribosome small subunit is expressed in all living cells. It performs numerous essential functions during translation, including formation of the initiation complex and proofreading of base-pairs between mRNA codons and tRNA anticodons. The core constituent of the small ribosomal subunit is a ~1.5 kb RNA strand in prokaryotes (16S rRNA) and a homologous ~1.8 kb RNA strand in eukaryotes (18S rRNA). Traditional sequencing-by-synthesis (SBS) of rRNA genes or rRNA cDNA copies has achieved wide use as a 'molecular chronometer' for phylogenetic studies, and as a tool for identifying infectious organisms in the clinic. However, epigenetic modifications on rRNA are erased by SBS methods. Here we describe direct MinION nanopore sequencing of individual, full-length 16S rRNA absent reverse transcription or amplification. As little as 5 picograms (~10 attomole) of purified E. coli 16S rRNA was detected in 4.5 micrograms of total human RNA. Nanopore ionic current traces that deviated from canonical patterns revealed conserved E. coli 16S rRNA 7-methylguanosine and pseudouridine modifications, and a 7-methylguanosine modification that confers aminoglycoside resistance to some pathological E. coli strains.


Assuntos
Nanoporos , RNA Ribossômico 16S/genética , Análise de Sequência de RNA/métodos , Escherichia coli/genética , RNA Bacteriano/genética
5.
Nat Methods ; 15(3): 201-206, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29334379

RESUMO

Sequencing the RNA in a biological sample can unlock a wealth of information, including the identity of bacteria and viruses, the nuances of alternative splicing or the transcriptional state of organisms. However, current methods have limitations due to short read lengths and reverse transcription or amplification biases. Here we demonstrate nanopore direct RNA-seq, a highly parallel, real-time, single-molecule method that circumvents reverse transcription or amplification steps. This method yields full-length, strand-specific RNA sequences and enables the direct detection of nucleotide analogs in RNA.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , RNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Análise de Sequência de RNA/métodos
6.
J Biol Chem ; 287(16): 13407-21, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22378784

RESUMO

Complexes of phi29 DNA polymerase and DNA fluctuate on the millisecond time scale between two ionic current amplitude states when captured atop the α-hemolysin nanopore in an applied field. The lower amplitude state is stabilized by complementary dNTP and thus corresponds to complexes in the post-translocation state. We have demonstrated that in the upper amplitude state, the DNA is displaced by a distance of one nucleotide from the post-translocation state. We propose that the upper amplitude state corresponds to complexes in the pre-translocation state. Force exerted on the template strand biases the complexes toward the pre-translocation state. Based on the results of voltage and dNTP titrations, we concluded through mathematical modeling that complementary dNTP binds only to the post-translocation state, and we estimated the binding affinity. The equilibrium between the two states is influenced by active site-proximal DNA sequences. Consistent with the assignment of the upper amplitude state as the pre-translocation state, a DNA substrate that favors the pre-translocation state in complexes on the nanopore is a superior substrate in bulk phase for pyrophosphorolysis. There is also a correlation between DNA sequences that bias complexes toward the pre-translocation state and the rate of exonucleolysis in bulk phase, suggesting that during DNA synthesis the pathway for transfer of the primer strand from the polymerase to exonuclease active site initiates in the pre-translocation state.


Assuntos
Fagos Bacilares/enzimologia , Fagos Bacilares/genética , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Nanoporos , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Domínio Catalítico/fisiologia , DNA Viral/metabolismo , DNA Polimerase Dirigida por DNA/síntese química , Difosfatos/metabolismo , Ativação Enzimática/fisiologia , Exonucleases/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Sequências Repetidas Invertidas/genética , Proteínas Motores Moleculares/fisiologia , Conformação de Ácido Nucleico
7.
J Biol Chem ; 286(16): 14480-92, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21362617

RESUMO

During each catalytic cycle, DNA polymerases select deoxyribonucleoside triphosphate (dNTP) substrates complementary to a templating base with high fidelity from a pool that includes noncomplementary dNTPs and both complementary and noncomplementary ribonucleoside triphosphates (rNTPs). The Klenow fragment of Escherichia coli DNA polymerase I (KF) achieves this through a series of conformational transitions that precede the chemical step of phosphodiester bond formation. Kinetic evidence from fluorescence and FRET experiments indicates that discrimination of the base and sugar moieties of the incoming nucleotide occurs in distinct, sequential steps during the selection pathway. Here we show that KF-DNA complexes formed with complementary rNTPs or with noncomplementary nucleotides can be distinguished on the basis of their properties when captured in an electric field atop the α-hemolysin nanopore. The average nanopore dwell time of KF-DNA complexes increased as a function of complementary rNTP concentration. The increase was less than that promoted by complementary dNTP, indicating that the rNTP complexes are more stable than KF-DNA binary complexes but less stable than KF-DNA-dNTP ternary complexes. KF-DNA-rNTP complexes could also be distinguished from KF-DNA-dNTP complexes on the basis of ionic current amplitude. In contrast to complementary rNTPs, noncomplementary dNTPs and rNTPs diminished the average nanopore dwell time of KF-DNA complexes in a concentration-dependent manner, suggesting that binding of a noncomplementary nucleotide keeps the KF-DNA complex in a less stable state. These results imply that nucleotide selection proceeds through a series of complexes of increasing stability in which substrates with the correct moiety promote the forward transitions.


Assuntos
DNA Polimerase I/química , Nanoporos , Algoritmos , Biofísica/métodos , DNA/química , DNA Polimerase I/metabolismo , Eletrofisiologia , Escherichia coli/enzimologia , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Modelos Estatísticos , Nanotecnologia/métodos , Nucleotídeos/química , Oligonucleotídeos/química , Ligação Proteica , Especificidade por Substrato
8.
ACS Nano ; 3(6): 1457-66, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19489560

RESUMO

DNA polymerases are molecular motors that catalyze template-dependent DNA replication, advancing along template DNA by one nucleotide with each catalytic cycle. Nanopore-based measurements have emerged as a single molecule technique for the study of these enzymes. Using the alpha-hemolysin nanopore, we determined the position of DNA templates bearing inserts of abasic (1',2'-dideoxy) residues, bound to the Klenow fragment of Escherichia coli DNA polymerase I (KF) or to bacteriophage T7 DNA polymerase. Hundreds of individual polymerase complexes were analyzed at 5 A precision within minutes. We generated a map of current amplitudes for DNA-KF-deoxynucleoside triphosphate (dNTP) ternary complexes, using a series of templates bearing blocks of three abasic residues that were displaced by approximately 5 A in the nanopore lumen. Plotted as a function of the distance of the abasic insert from n = 0 in the active site of the enzyme held atop the pore, this map has a single peak. The map is similar when the primer length, the DNA sequences flanking the abasic insert, and the DNA sequences in the vicinity of the KF active site are varied. Primer extension catalyzed by KF using a three abasic template in the presence of a mixture of dNTPs and 2',3'-dideoxynucleoside triphosphates resulted in a ladder of ternary complexes with discrete amplitudes that closely corresponded to this map. An ionic current map measured in the presence of 0.15 M KCl mirrored the map obtained with 0.3 M KCl, permitting experiments with a broader range of mesophilic DNA and RNA processing enzymes. We used the abasic templates to show that capture of complexes with the KF homologue, T7 DNA polymerase, yields an amplitude map nearly indistinguishable from the KF map.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Nanoestruturas , Moldes Genéticos , Sequência de Bases , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...