Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Front Immunol ; 12: 729837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603305

RESUMO

We have developed a dual-antigen COVID-19 vaccine incorporating genes for a modified SARS-CoV-2 spike protein (S-Fusion) and the viral nucleocapsid (N) protein with an Enhanced T-cell Stimulation Domain (N-ETSD) to increase the potential for MHC class II responses. The vaccine antigens are delivered by a human adenovirus serotype 5 platform, hAd5 [E1-, E2b-, E3-], previously demonstrated to be effective in the presence of Ad immunity. Vaccination of rhesus macaques with the hAd5 S-Fusion + N-ETSD vaccine by subcutaneous prime injection followed by two oral boosts elicited neutralizing anti-S IgG and T helper cell 1-biased T-cell responses to both S and N that protected the upper and lower respiratory tracts from high titer (1 x 106 TCID50) SARS-CoV-2 challenge. Notably, viral replication was inhibited within 24 hours of challenge in both lung and nasal passages, becoming undetectable within 7 days post-challenge.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Adenovírus Humanos/metabolismo , Administração Oral , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , Citocinas/sangue , Imunização Secundária/métodos , Imunoglobulina G/sangue , Pulmão/virologia , Macaca mulatta , Nariz/virologia , Fosfoproteínas/imunologia , Domínios Proteicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinação , Replicação Viral/imunologia
3.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209173

RESUMO

Efforts to cure human immunodeficiency virus (HIV) infection are obstructed by reservoirs of latently infected CD4+ T cells that can reestablish viremia. HIV-specific broadly neutralizing antibodies (bNAbs), defined by unusually wide neutralization breadths against globally diverse viruses, may contribute to the elimination of these reservoirs by binding to reactivated cells, thus targeting them for immune clearance. However, the relationship between neutralization of reservoir isolates and binding to corresponding infected primary CD4+ T cells has not been determined. Thus, the extent to which neutralization breadths and potencies can be used to infer the corresponding parameters of infected cell binding is currently unknown. We assessed the breadths and potencies of bNAbs against 36 viruses reactivated from peripheral blood CD4+ T cells from antiretroviral (ARV)-treated HIV-infected individuals by using paired neutralization and infected cell binding assays. Single-antibody breadths ranged from 0 to 64% for neutralization (80% inhibitory concentration [IC80] of ≤10 µg/ml) and from 0 to 89% for binding, with two-antibody combinations (results for antibody combinations are theoretical/predicted) reaching levels of 0 to 83% and 50 to 100%, respectively. Infected cell binding correlated with virus neutralization for 10 of 14 antibodies (e.g., for 3BNC117, r = 0.82 and P < 0.0001). Heterogeneity was observed, however, with a lack of significant correlation for 2G12, CAP256.VRC26.25, 2F5, and 4E10. Our results provide guidance on the selection of bNAbs for interventional cure studies, both by providing a direct assessment of intra- and interindividual variabilities in neutralization and infected cell binding in a novel cohort and by defining the relationships between these parameters for a panel of bNAbs.IMPORTANCE Although antiretroviral therapies have improved the lives of people who are living with HIV, they do not cure infection. Efforts are being directed towards harnessing the immune system to eliminate the virus that persists, potentially resulting in virus-free remission without medication. HIV-specific antibodies hold promise for such therapies owing to their ability to both prevent the infection of new cells (neutralization) and direct the killing of infected cells. We isolated 36 HIV strains from individuals whose virus was suppressed by medication and tested 14 different antibodies for neutralization of these viruses and for binding to cells infected with the same viruses (critical for engaging natural killer cells). For both neutralization and infected cell binding, we observed variation both between individuals and amongst different viruses within an individual. For most antibodies, neutralization activity correlated with infected cell binding. These data provide guidance on the selection of antibodies for clinical trials.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Viremia/imunologia , Adulto , Citotoxicidade Celular Dependente de Anticorpos , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Viremia/virologia
4.
Oncotarget ; 9(51): 29743-29752, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30038717

RESUMO

Somatic mutations in DNA repair genes have been clinically associated with chemosensitivity, although few studies have interrogated the nucleotide synthesis pathways that supply DNA repair processes. Previous work suggests that bladder urothelial carcinoma is uniquely enriched for mutations in nucleotide excision repair genes, and that these mutations are associated with response to platinum-based therapy and favorable survival. Conversely, the de novo pyrimidine synthesis pathway has recently emerged as a putative clinical target. This anabolic process is thought to supply DNA repair processes such as nucleotide excision repair; that is, DNA repair enzymes may require a sufficient nucleotide supply available to reverse the intended genotoxic damage of systemic chemotherapy in rapidly proliferating cancer cells. Therefore, we explored the prognostic complementarity between de novo pyrimidine synthesis and nucleotide excision repair expression in a total of 570 bladder urothelial carcinoma patients. Ultimately, we show that the de novo pyrimidine synthesis gene CAD is associated with poor survival (P = 0.008) and is co-altered with the nucleotide excision repair gene POLD2. High expression of POLD2 was also associated with poor overall survival (P = 0.019) and was significantly correlated with CAD expression in pre-treatment patient tumor samples (P = 2.44e-4). Expression of each gene was associated with cisplatin-based therapy resistance, and accordingly, CADhighPOLD2high patients were associated with worse survival than CADhighPOLD2low and CADlowPOLD2high patients. Together, these biomarkers could help elucidate mechanisms of chemoresistance to further personalize therapeutic strategies in bladder urothelial carcinoma.

5.
NPJ Genom Med ; 3: 14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928512

RESUMO

Immune heterogeneity within the tumor microenvironment undoubtedly adds several layers of complexity to our understanding of drug sensitivity and patient prognosis across various cancer types. Within the tumor microenvironment, immunogenicity is a favorable clinical feature in part driven by the antitumor activity of CD8+ T cells. However, tumors often inhibit this antitumor activity by exploiting the suppressive function of regulatory T cells (Tregs), thus suppressing the adaptive immune response. Despite the seemingly intuitive immunosuppressive biology of Tregs, prognostic studies have produced contradictory results regarding the relationship between Treg enrichment and survival. We therefore analyzed RNA-seq data of Treg-enriched tumor samples to derive a pan-cancer gene signature able to help reconcile the inconsistent results of Treg studies, by better understanding the variable clinical association of Tregs across alternative tumor contexts. We show that increased expression of a 32-gene signature in Treg-enriched tumor samples (n = 135) is able to distinguish a cohort of patients associated with chemosensitivity and overall survival. This cohort is also enriched for CD8+ T cell abundance, as well as the antitumor M1 macrophage subtype. With a subsequent validation in a larger TCGA pool of Treg-enriched patients (n = 626), our results reveal a gene signature able to produce unsupervised clusters of Treg-enriched patients, with one cluster of patients uniquely representative of an immunogenic tumor microenvironment. Ultimately, these results support the proposed gene signature as a putative biomarker to identify certain Treg-enriched patients with immunogenic tumors that are more likely to be associated with features of favorable clinical outcome.

6.
Ann Dermatol ; 29(6): 688-698, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29200756

RESUMO

BACKGROUND: Acne vulgaris is a disease of the pilosebaceous unit characterized by increased sebum production, hyperkeratinization, and immune responses to Propionibacterium acnes (PA). Here, we explore a possible mechanism by which a lipid receptor, G2A, regulates immune responses to a commensal bacterium. OBJECTIVE: To elucidate the inflammatory properties of G2A in monocytes in response to PA stimulation. Furthermore, our study sought to investigate pathways by which lipids modulate immune responses in response to PA. METHODS: Our studies focused on monocytes collected from human peripheral blood mononuclear cells, the monocytic cell line THP-1, and a lab strain of PA. Our studies involved the use of enzyme-linked immunosorbent, Western blot, reverse transcription polymerase chain reaction, small interfering RNA (siRNA), and microarray analysis of human acne lesions in the measurements of inflammatory markers. RESULTS: G2A gene expression is higher in acne lesions compared to normal skin and is inducible by the acne therapeutic, 13-cis-retinoic acid. In vitro, PA induces both the Toll-like receptor 2-dependent expression of G2A as well as the production of the G2A ligand, 9-hydroxyoctadecadienoic acid, from human monocytes. G2A gene knockdown through siRNA enhances PA stimulation of interleukin (IL)-6, IL-8, and IL-1ß possibly through increased activation of the ERK1/2 MAP kinase and nuclear factor kappa B p65 pathways. CONCLUSION: G2A may play a role in quelling inflammatory cytokine response to PA, revealing G2A as a potential attenuator of inflammatory response in a disease associated with a commensal bacterium.

7.
J Exp Clin Cancer Res ; 36(1): 62, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28476134

RESUMO

Multiple myeloma (MM) is a clonal plasma-cell neoplastic disorder arising from an indolent premalignant disease known as monoclonal gammopathy of undetermined significance (MGUS). MM is a biologically complex heterogeneous disease reflected by its variable clinical responses of patients receiving the same treatment. Therefore, a molecular identification of stage-specific biomarkers will support a more individualized precise diagnostic/prognostic approach, an effective therapeutic regime, and will assist in the identification of novel therapeutic molecular targets. The metastatic suppressor/anti-resistance factor Raf-1 kinase inhibitor protein (RKIP) is poorly expressed in the majority of cancers and is often almost absent in metastatic tumors. RKIP inhibits the Raf/MEK/ERK1/2 and the NF-κB pathways. Whereby all tumors examined exhibited low levels of RKIP, in contrast, our recent findings demonstrated that RKIP is overexpressed primarily in its inactive phosphorylated form in MM cell lines and patient-derived tumor tissues. The underlying mechanism of RKIP overexpression in MM, in contrast to other tumors, is not known. We examined transcriptomic datasets on Oncomine platform (Life Technologies) for the co-expression of RKIP and other gene products in both pre-MM and MM. The transcription of several gene products was found to be either commonly overexpressed (i.e., RKIP, Bcl-2, and DR5) or underexpressed (i.e., Bcl-6 and TNFR2) in both pre-MM and MM. Noteworthy, a significant inverse correlation of differentially expressed pro-apoptotic genes was observed in pre-MM: overexpression of Fas and TNF-α and underexpression of YY1 versus expression of anti-apoptotic genes in MM: overexpression of YY1 and underexpression of Fas and TNF-α. Based on the analysis on mRNA levels and reported studies on protein levels of the above various genes, we have constructed various schemes that illustrate the possible cross-talks between RKIP (active/inactive) and the identified gene products that underlie the mechanism of RKIP overexpression in MM. Clearly, such cross-talks would need to be experimentally validated in both MM cell lines and patient-derived tumor tissues. If validated, the differential molecular signatures between pre-MM and MM might lead to a more precise diagnosis/prognosis of the disease and disease stages and will also identify novel molecular therapeutic targets for pre-MM and MM.


Assuntos
Epistasia Genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Mieloma Múltiplo/genética , Proteína de Ligação a Fosfatidiletanolamina/genética , Animais , Biomarcadores , Humanos , Mieloma Múltiplo/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo
8.
Microbiol Res ; 194: 29-37, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27938860

RESUMO

Desaturases, key enzymes in the metabolism of fatty acids, regulate the physical and biochemical properties of membranes. They adjust the composition of saturated and unsaturated fatty acids in response to changes in the environmental. We demonstrated the existence of Δ9 desaturase activity in epimastigotes of the Trypanosoma cruzi Tulahuen strain. In the present study, showed that this enzyme has an approximate molecular mass of 50kDa and a pI value of approximately 9. In order to characterize the Δ9 desaturase of Trypanosoma cruzi, (TcΔ9DES) we have cloned, sequenced and expressed in Escherichia coli. The gene consists of 1300bp and encodes a peptide of 433 amino acids with a molecular weight of 50kDa. Analysis of the amino acid sequence revealed three clusters of histidine and two hydrophobic regions, characteristic of membrane-bound desaturases. Gene expression studies showed that TcΔ9DES was overexpressed as an active protein. Fatty acid analysis showed that the expressed protein was confirmed to be functional with Δ9 desaturase activity. This enzyme changed the fatty acid profile of TcΔ9DES-expressing E. coli, decreasing the levels of palmitic (16:0) and stearic (18:0) acids and enhancing palmitoleic (16:1Δ9) and monounsaturated 18 carbons fatty acids. When [1-14C]palmitic or [1-14C]stearic acid was used as substrate, TcΔ9DES-expressing E. coli exhibited high desaturase activity associated with increased levels of monounsaturated fatty acids, suggesting that the TcΔ9DES enzyme was actively expressed in E. coli. To check the commitment of TcΔ9DES against sterol biosynthesis inhibitors we tested the activity under ketoconazole effect. Native TcΔ9DES, showed a significant activity inhibition. Since TcΔ9DES has shown active participation under different environmental factors, among them, ketoconazole, we consider that it plays a critical role in the metabolism of the parasite.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética , Sequência de Bases , Cromatografia Gasosa , Clonagem Molecular , DNA de Protozoário/isolamento & purificação , Escherichia coli/genética , Ácidos Graxos Dessaturases/química , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Expressão Gênica , Focalização Isoelétrica/métodos , Cetoconazol/farmacologia , Análise de Sequência , Estearoil-CoA Dessaturase , Trypanosoma cruzi/metabolismo
10.
J Exp Clin Cancer Res ; 35: 84, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225481

RESUMO

The transcription factor Yin Yang 1 (YY1) is frequently overexpressed in cancerous tissues compared to normal tissues and has regulatory roles in cell proliferation, cell viability, epithelial-mesenchymal transition, metastasis and drug/immune resistance. YY1 shares many properties with cancer stem cells (CSCs) that drive tumorigenesis, metastasis and drug resistance and are regulated by overexpression of certain transcription factors, including SOX2, OCT4 (POU5F1), BMI1 and NANOG. Based on these similarities, it was expected that YY1 expression would be associated with SOX2, OCT4, BMI1, and NANOG's expressions and activities. Data mining from the proteomic tissue-based datasets from the Human Protein Atlas were used for protein expression patterns of YY1 and the four CSC markers in 17 types of cancer, including both solid and hematological malignancies. A close association was revealed between the frequency of expressions of YY1 and SOX2 as well as SOX2 and OCT4 in all cancers analyzed. Two types of dynamics were identified based on the nature of their association, namely, inverse or direct, between YY1 and SOX2. These two dynamics define distinctive patterns of BMI1 and OCT4 expressions. The relationship between YY1 and SOX2 expressions as well as the expressions of BMI1 and OCT4 resulted in the classification of four groups of cancers with distinct molecular signatures: (1) Prostate, lung, cervical, endometrial, ovarian and glioma cancers (YY1(lo)SOX2(hi)BMI1(hi)OCT4(hi)) (2) Skin, testis and breast cancers (YY1(hi)SOX2(lo)BMI1(hi)OCT4(hi)) (3) Liver, stomach, renal, pancreatic and urothelial cancers (YY1(lo)SOX2(lo)BMI1(hi)OCT4(hi)) and (4) Colorectal cancer, lymphoma and melanoma (YY1(hi)SOX2(hi)BMI1(lo)OCT4(hi)). A regulatory loop is proposed consisting of the cross-talk between the NF-kB/PI3K/AKT pathways and the downstream inter-regulation of target gene products YY1, OCT4, SOX2 and BMI1.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Mineração de Dados , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo , Proteômica/métodos , Transdução de Sinais
11.
Redox Biol ; 6: 486-494, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26432660

RESUMO

The generation of NO by the various NO synthases in normal and malignant tissues is manifested by various biological effects that are involved in the regulation of cell survival, differentiation and cell death. The role of NO in the cytotoxic immune response was first revealed by demonstrating the induction of iNOS in target cells by immune cytokines (e.g. IFN-γ, IL-1, TNF-α, etc.) and resulting in the sensitization of resistant tumor cells to death ligands-induced apoptosis. Endogenous/exogenous NO mediated its immune sensitizing effect by inhibiting NF-κΒ activity and downstream, inactivating the repressor transcription factor YY1, which inhibited both Fas and DR5 expressions. In addition, NO-mediated inhibition of NF-κΒ activity and inhibition downstream of its anti-apoptotic gene targets sensitized the tumor cells to apoptosis by chemotherapeutic drugs. We have identified in tumor cells a dysregulated pro-survival/anti-apoptotic loop consisting of NF-κB/Snail/YY1/RKIP/PTEN and its modification by NO was responsible, in large, for the reversal of chemo and immune resistance and sensitization to apoptotic mechanisms by cytotoxic agents. Moreover, tumor cells treated with exogenous NO donors resulted in the inhibition of NF-κΒ activity via S-nitrosylation of p50 and p65, inhibition of Snail (NF-κΒ target gene), inhibition of transcription repression by S-nitrosylation of YY1 and subsequent inhibition of epithelial-mesenchymal transition (EMT), induction of RKIP (inhibition of the transcription repressor Snail), and induction of PTEN (inhibition of the repressors Snail and YY1). Further, each gene product modified by NO in the loop was involved in chemo-immunosensitization. These above findings demonstrated that NO donors interference in the regulatory circuitry result in chemo-immunosensitization and inhibition of EMT. Overall, these observations suggest the potential anti-tumor therapeutic effect of NO donors in combination with subtoxic chemo-immuno drugs. This combination acts on multiple facets including reversal of chemo-immune resistance, and inhibition of both EMT and metastasis.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Resistencia a Medicamentos Antineoplásicos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico/fisiologia , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Imunoterapia , Transdução de Sinais
12.
Biomed Res Int ; 2015: 925703, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874233

RESUMO

Triple-negative breast cancer (TNBC) occurs in 10-15% of patients yet accounts for almost half of all breast cancer deaths. TNBCs lack expression of estrogen and progesterone receptors and HER-2 overexpression and cannot be treated with current targeted therapies. TNBCs often occur in African American and younger women. Although initially responsive to some chemotherapies, TNBCs tend to relapse and metastasize. Thus, it is critical to find new therapeutic targets. A second ER gene product, termed ERß, in the absence of ERα may be such a target. Using human TNBC specimens with known clinical outcomes to assess ERß expression, we find that ERß1 associates with significantly worse 5-year overall survival. Further, a panel of TNBC cell lines exhibit significant levels of ERß protein. To assess ERß effects on proliferation, ERß expression in TNBC cells was silenced using shRNA, resulting in a significant reduction in TNBC proliferation. ERß-specific antagonists similarly suppressed TNBC growth. Growth-stimulating effects of ERß may be due in part to downstream actions that promote VEGF, amphiregulin, and Wnt-10b secretion, other factors associated with tumor promotion. In vivo, insulin-like growth factor-2 (IGF-2), along with ERß1, is significantly expressed in TNBC and stimulates high ERß mRNA in TNBC cells. This work may help elucidate the interplay of metabolic and growth factors in TNBC.


Assuntos
Neoplasias da Mama/metabolismo , Receptor beta de Estrogênio/biossíntese , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento Insulin-Like II/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Proliferação de Células , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/genética , Feminino , Humanos , Fator de Crescimento Insulin-Like II/antagonistas & inibidores , Fator de Crescimento Insulin-Like II/genética , Células MCF-7 , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética
13.
J Invest Dermatol ; 134(2): 381-388, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23884315

RESUMO

Propionibacterium acnes induction of inflammatory responses is a major etiological factor contributing to the pathogenesis of acne vulgaris. In particular, the IL-1 family of cytokines has a critical role in both initiation of acne lesions and in the inflammatory response in acne. In this study, we demonstrated that human monocytes respond to P. acnes and secrete mature IL-1ß partially via the NLRP3-mediated pathway. When monocytes were stimulated with live P. acnes, caspase-1 and caspase-5 gene expression was upregulated; however, IL-1ß secretion required only caspase-1 activity. P. acnes induced key inflammasome genes including NLRP1 and NLPR3. Moreover, silencing of NLRP3, but not NLRP1, expression by small interfering RNA attenuated P. acnes-induced IL-1ß secretion. The mechanism of P. acnes-induced NLRP3 activation and subsequent IL-1ß secretion was found to involve potassium efflux. Finally, in acne lesions, mature caspase-1 and NLRP3 were detected around the pilosebaceous follicles and colocalized with tissue macrophages. Taken together, our results indicate that P. acnes triggers a key inflammatory mediator, IL-1ß, via NLRP3 and caspase-1 activation, suggesting a role for inflammasome-mediated inflammation in acne pathogenesis.


Assuntos
Proteínas de Transporte/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Interleucina-1beta/imunologia , Monócitos/imunologia , Monócitos/microbiologia , Propionibacterium acnes/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Caspases/genética , Caspases/metabolismo , Células Cultivadas , Humanos , Inflamassomos/genética , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Monócitos/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas NLR , RNA Interferente Pequeno/genética
14.
J Invest Dermatol ; 134(2): 366-373, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23924903

RESUMO

Acne vulgaris is the most common skin disorder affecting millions of people worldwide and inflammation resulting from the immune response targeting Propionibacterium acnes has a significant role in its pathogenesis. In this study, we have demonstrated that P. acnes is a potent inducer of T helper 17 (Th17) and Th1, but not Th2 responses in human peripheral blood mononuclear cells (PBMCs). P. acnes stimulated expression of key Th17-related genes, including IL-17A, RORα, RORc, IL-17RA, and IL-17RC, and triggered IL-17 secretion from CD4(+), but not from CD8(+) T cells. Supernatants from P. acnes-stimulated PBMCs were sufficient to promote the differentiation of naive CD4(+)CD45RA T cells into Th17 cells. Furthermore, we found that the combination of IL-1ß, IL-6, and transforming growth factor-ß-neutralizing antibodies completely inhibited P. acnes-induced IL-17 production. Importantly, we showed that IL-17-expressing cells were present in skin biopsies from acne patients but not from normal donors. Finally, vitamin A (all-trans retinoic acid) and vitamin D (1,25-dihydroxyvitamin D3) inhibited P. acnes-induced Th17 differentiation. Together, our data demonstrate that IL-17 is induced by P. acnes and expressed in acne lesions and that both vitamin A and D could be effective tools to modulate Th17-mediated diseases such as acne.


Assuntos
Acne Vulgar/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Interleucina-17/imunologia , Propionibacterium acnes/imunologia , Vitamina A/metabolismo , Vitamina D/imunologia , Acne Vulgar/microbiologia , Acne Vulgar/patologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Diferenciação Celular/imunologia , Infecções por Bactérias Gram-Positivas/patologia , Humanos , Interleucina-17/metabolismo , Interleucinas/imunologia , Interleucinas/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores de Interleucina/imunologia , Receptores de Interleucina/metabolismo , Receptores de Interleucina-17/imunologia , Receptores de Interleucina-17/metabolismo , Células Th1/citologia , Células Th1/imunologia , Células Th1/microbiologia , Células Th17/citologia , Células Th17/imunologia , Células Th17/microbiologia , Interleucina 22
15.
Pediatr Res ; 74(6): 712-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24002329

RESUMO

BACKGROUND: Intrathecal (IT) enzyme replacement therapy with recombinant human α-L-iduronidase (rhIDU) has been studied to treat glycosaminoglycan storage in the central nervous system of mucopolysaccharidosis (MPS) I dogs and is currently being studied in MPS I patients. METHODS: We studied the immune response to IT rhIDU in MPS I subjects with spinal cord compression who had been previously treated with intravenous rhIDU. We measured the concentrations of specific antibodies and cytokines in serum and cerebrospinal fluid (CSF) collected before monthly IT rhIDU infusions and compared the serologic findings with clinical adverse event (AE) reports to establish temporal correlations with clinical symptoms. RESULTS: Five MPS I subjects participating in IT rhIDU trials were studied. One subject with symptomatic spinal cord compression had evidence of an inflammatory response with CSF leukocytosis, elevated interleukin-5, and elevated immunoglobulin G. This subject also complained of lower back pain and buttock paresthesias temporally correlated with serologic abnormalities. Clinical symptoms were managed with oral medication, and serologic abnormalities were resolved, although this subject withdrew from the trial to have spinal decompressive surgery. CONCLUSION: IT rhIDU was generally well tolerated in the subjects studied, although one subject had moderate to severe clinical symptoms and serologic abnormalities consistent with an immune response.


Assuntos
Iduronidase/uso terapêutico , Mucopolissacaridose I/tratamento farmacológico , Adulto , Pré-Escolar , Feminino , Humanos , Lactente , Injeções Espinhais , Masculino , Proteínas Recombinantes/uso terapêutico , Adulto Jovem
16.
Crit Rev Oncog ; 16(3-4): 227-38, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22248056

RESUMO

Yin Yang (YY) 1 represents the epitome of what is considered to be a "Swiss army knife" transcription factor and regulator. YY1 is a ubiquitous and multifunctional zinc-finger transcription factor member of the Polycomb group protein family, a group of homeobox gene receptors that can act as activators or repressors of transcriptional activity. Furthermore, YY1 can act as a redox sensor, adaptor molecule, and chromatin structure and function regulator. YYl's characteristic function as transcriptional activator and repressor relies on its C2H2 (x4) zinc-finger structural DNA-binding motifs tangled with 2 specific regulatory domains. This structural conformation will render the activity of YY1 susceptible to changes in cellular redox status. YY1 also has been shown to undergo chromatin remodeling via interactions with histone acetyl transferase and histone deacetylase complexes. Both groups modify histones, resulting in altered chromatin structure. Herein, we will discuss the multiple roles and mechanisms of YY1 in the regulation of gene expression, its genetic factor functions, epigenetic regulatory activity, and its role as a redox sensor in the context of malignant neoplastic diseases.


Assuntos
Inativação Gênica , Neoplasias/genética , Transcrição Gênica/fisiologia , Fator de Transcrição YY1/fisiologia , Humanos , Neoplasias/patologia , Fator de Transcrição YY1/genética
17.
Proc Natl Acad Sci U S A ; 107(32): 14484-9, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660740

RESUMO

Tumor growth requires neoangiogenesis. VEGF is the most potent proangiogenic factor. Dysregulation of hypoxia-inducible factor (HIF) or cytokine stimuli such as those involving the chemokine receptor 4/stromal-derived cell factor 1 (CXCR4/SDF-1) axis are the major cause of ectopic overexpression of VEGF in tumors. Although the CXCR4/SDF-1 pathway is well characterized, the transcription factors executing the effector function of this signaling are poorly understood. The multifunctional Yin Yang 1 (YY1) protein is highly expressed in different types of cancers and may regulate some cancer-related genes. The network involving CXCR4/YY1 and neoangiogenesis could play a major role in cancer progression. In this study we have shown that YY1 forms an active complex with HIF-1alpha at VEGF gene promoters and increases VEGF transcription and expression observed by RT-PCR, ELISA, and Western blot using two different antibodies against VEGFB. Long-term treatment with T22 peptide (a CXCR4/SDF-1 inhibitor) and YY1 silencing can reduce in vivo systemic neoangiogenesis (P < 0.01 and P < 0.05 vs. control, respectively) during metastasis. Moreover, using an in vitro angiogenesis assay, we observed that YY1 silencing led to a 60% reduction in branches (P < 0.01) and tube length (P < 0.02) and a 75% reduction in tube area (P < 0.001) compared with control cells. A similar reduction was observed using T22 peptide. We demonstrated that T22 peptide determines YY1 cytoplasmic accumulation by reducing its phosphorylation via down-regulation of AKT, identifying a crosstalk mechanism involving CXCR4/YY1. Thus, YY1 may represent a crucial molecular target for antiangiogenic therapy during cancer progression.


Assuntos
Neoplasias/irrigação sanguínea , Neovascularização Patológica , Receptores CXCR4/antagonistas & inibidores , Fatores de Crescimento do Endotélio Vascular/genética , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transplante de Neoplasias , Neoplasias/metabolismo , Peptídeos/farmacologia , Ratos , Receptor Cross-Talk/fisiologia , Receptores CXCR4/metabolismo , Fatores de Transcrição , Transplante Heterólogo , Fator de Transcrição YY1/fisiologia
18.
Cancer Res ; 69(22): 8693-9, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19861533

RESUMO

Tumors grow in the presence of antigen-specific T cells, suggesting the existence of intrinsic cancer cell escape mechanisms. We hypothesized that a histone deacetylase (HDAC) inhibitor could sensitize tumor cells to immunotherapy because this class of agents has been reported to increase tumor antigen expression and shift gene expression to a proapoptotic milieu in cancer cells. To test this question, we treated B16 murine melanoma with the combination of the HDAC inhibitor LAQ824 and the adoptive transfer of gp100 melanoma antigen-specific pmel-1 T cells. The combined therapy significantly improved antitumor activity through several mechanisms: (a) increase in MHC and tumor-associated antigen expression by tumor cells; (b) decrease in competing endogenous lymphocytes in recipient mice, resulting in a proliferative advantage for the adoptively transferred cells; and (c) improvement in the functional activity of the adoptively transferred lymphocytes. We confirmed the beneficial effects of this HDAC inhibitor as a sensitizer to immunotherapy in a different model of prophylactic prime-boost vaccination with the melanoma antigen tyrosinase-related protein 2, which also showed a significant improvement in antitumor activity against B16 melanoma. In conclusion, the HDAC inhibitor LAQ824 significantly enhances tumor immunotherapy through effects on target tumor cells as well as improving the antitumor activity of tumor antigen-specific lymphocytes.


Assuntos
Transferência Adotiva , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Melanoma Experimental/terapia , Linfócitos T/transplante , Transferência Adotiva/métodos , Animais , Linhagem Celular Tumoral , Terapia Combinada , Citometria de Fluxo , Expressão Gênica , Perfilação da Expressão Gênica , Imunoterapia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL
19.
Cancer Immunol Immunother ; 58(5): 699-708, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18807035

RESUMO

Several tumor immunotherapy approaches result in a low percentage of durable responses in selected cancers. We hypothesized that the insensitivity of cancer cells to immunotherapy may be related to an anti-apoptotic cancer cell milieu, which could be pharmacologically reverted through the inhibition of antiapoptotic Bcl-2 family proteins in cancer cells. ABT-737, a small molecule inhibitor of the antiapoptotic proteins Bcl-2, Bcl-w and Bcl-x(L), was tested for the ability to increase antitumor immune responses in two tumor immunotherapy animal models. The addition of systemic therapy with ABT-737 to the immunization of BALB/c mice with tumor antigen peptide-pulsed dendritic cells (DC) resulted in a significant delay in CT26 murine colon carcinoma tumor growth and improvement in survival. However, the addition of ABT-737 to either a vaccine strategy involving priming with TRP-2 melanoma antigen peptide-pulsed DC and boosting with recombinant Listeria monocytogenes expressing the same melanoma antigen, or the adoptive transfer of TCR transgenic cells, did not result in superior antitumor activity against B16 murine melanoma. In vitro studies failed to demonstrate increased cytotoxic lytic activity when testing the combination of ABT-737 with lymphokine activated killer (LAK) cells, or the death receptor agonists Fas, TRAIL-ligand or TNF-alpha against the CT26 and B16 cell lines. In conclusion, the Bcl-2 inhibitor ABT-737 sensitized cancer cells to the antitumor effect of antigen-specific immunotherapy in a vaccine model for the CT26 colon carcinoma in vivo but not in two immunotherapy strategies against B16 melanoma.


Assuntos
Compostos de Bifenilo/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Neoplasias do Colo/terapia , Imunoterapia/métodos , Melanoma Experimental/terapia , Proteínas de Neoplasias/antagonistas & inibidores , Nitrofenóis/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Animais , Antígenos de Neoplasias/imunologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/imunologia , Neoplasias do Colo/imunologia , Citotoxicidade Imunológica , Células Dendríticas/imunologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imunoterapia Adotiva , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/imunologia , Células Matadoras Ativadas por Linfocina/transplante , Listeria monocytogenes/imunologia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Piperazinas/uso terapêutico , Receptores de Morte Celular/agonistas , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Receptor fas/farmacologia
20.
Nitric Oxide ; 19(2): 170-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18460349

RESUMO

Nitric oxide (NO) is a simple molecule with a complex and pleiotropic biological activity. NO or related species have been implicated in the regulation of many genes that participate in many diverse biological functions including programmed cell death or apoptosis. Apoptosis is a process that may potentially be disrupted in cancer cells conferring a survival advantage. In addition, malignant tumor cells can develop an intricate system of resistance to apoptotic stimuli. NO or related species have been shown to play a dual role in the regulation of apoptosis in malignant cells either promoting cell death or protecting cells from pro-apoptotic induction. However, the specific role of NO in the regulation of apoptosis/survival-related genes expression seems to tilt the balance toward the promotion of pro-apoptotic and the suppression of anti-apoptotic genes. Herein we have reviewed the most relevant aspects involving NO and/or reactive intermediates in the regulation of apoptosis-related genes--mainly--at the transcriptional level. We described the basic apoptotic molecules that potentially are affected by NO and how NO-mediated signaling gets transmitted to the transcriptional machinery that governs the expression of these genes. In addition, we discussed some of the fundamental functional consequences of the regulation of apoptosis-related genes by NO in cancer biology and its potential therapeutic implications.


Assuntos
Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/patologia , Óxido Nítrico/fisiologia , Humanos , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...