Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328199

RESUMO

Cadherin EGF Laminin G seven-pass G-type receptors (CELSRs or ADGRCs) are conserved adhesion G protein-coupled receptors which are essential for animal development. CELSRs have extracellular regions (ECRs) containing 23 adhesion domains which couple adhesion to intracellular signaling. However, molecular-level insight into CELSR function is sparsely available. We report the 4.3 Å cryo-EM reconstruction of the mCELSR1 ECR with 13 domains resolved in the structure. These domains form a compact module mediated by interdomain interactions with contact between the N- and C-terminal domains. We show the mCELSR1 ECR forms an extended species in the presence of Ca 2+ , which we propose represents the antiparallel cadherin repeat dimer. Using assays for adhesion and G protein-coupling, we assign the N-terminal CADH1-8 module as necessary for cell adhesion and we show the C-terminal CAHD9-GAIN module regulates signaling. Our work provides important molecular context to the literature on CELSR function and opens the door towards further mechanistic studies.

2.
Genes Brain Behav ; 22(4): e12853, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370259

RESUMO

Williams syndrome is a rare neurodevelopmental disorder exhibiting cognitive and behavioral abnormalities, including increased social motivation, risk of anxiety and specific phobias along with perturbed motor function. Williams syndrome is caused by a microdeletion of 26-28 genes on chromosome 7, including GTF2IRD1, which encodes a transcription factor suggested to play a role in the behavioral profile of Williams syndrome. Duplications of the full region also lead to frequent autism diagnosis, social phobias and language delay. Thus, genes in the region appear to regulate social motivation in a dose-sensitive manner. A "complete deletion" mouse, heterozygously eliminating the syntenic Williams syndrome region, has been deeply characterized for cardiac phenotypes, but direct measures of social motivation have not been assessed. Furthermore, the role of Gtf2ird1 in these behaviors has not been addressed in a relevant genetic context. Here, we have generated a mouse overexpressing Gtf2ird1, which can be used both to model duplication of this gene alone and to rescue Gtf2ird1 expression in the complete deletion mice. Using a comprehensive behavioral pipeline and direct measures of social motivation, we provide evidence that the Williams syndrome critical region regulates social motivation along with motor and anxiety phenotypes, but that Gtf2ird1 complementation is not sufficient to rescue most of these traits, and duplication does not decrease social motivation. However, Gtf2ird1 complementation does rescue light-aversive behavior and performance on select sensorimotor tasks, perhaps indicating a role for this gene in sensory processing or integration.


Assuntos
Síndrome de Williams , Camundongos , Animais , Síndrome de Williams/genética , Síndrome de Williams/metabolismo , Transativadores/genética , Transativadores/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição/genética , Comportamento Social , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
3.
bioRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36711815

RESUMO

Williams Syndrome is a rare neurodevelopmental disorder exhibiting cognitive and behavioral abnormalities, including increased social motivation, risk of anxiety and specific phobias along with perturbed motor function. Williams Syndrome is caused by a microdeletion of 26-28 genes on chromosome 7, including GTF2IRD1 , which encodes a transcription factor suggested to play a role in the behavioral profile of Williams Syndrome. Duplications of the full region also lead to frequent autism diagnosis, social phobias, and language delay. Thus, genes in the region appear to regulate social motivation in a dose-sensitive manner. A 'Complete Deletion' mouse, heterozygously eliminating the syntenic Williams Syndrome region, has been deeply characterized for cardiac phenotypes, but direct measures of social motivation have not been assessed. Furthermore, the role of Gtf2ird1 in these behaviors has not been addressed in a relevant genetic context. Here, we have generated a mouse overexpressing Gtf2ird1 , which can be used both to model duplication of this gene alone and to rescue Gtf2ird1 expression in the Complete Deletion mice. Using a comprehensive behavioral pipeline and direct measures of social motivation, we provide evidence that the Williams Syndrome Critical Region regulates social motivation along with motor and anxiety phenotypes, but that Gtf2ird1 complementation is not sufficient to rescue most of these traits, and duplication does not decrease social motivation. However, Gtf2ird1 complementation does rescue light-aversive behavior and performance on select sensorimotor tasks, perhaps indicating a role for this gene in sensory processing or integration.

4.
Horm Behav ; 126: 104848, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32918873

RESUMO

The increased prevalence of neurodevelopmental disorders during the last half-century led us to investigate the potential for intergenerational detrimental neurodevelopmental effects of synthetic female gonadal hormones, typically used in contraceptive pills. We examined 3 separate cohorts of mice over the span of 2 years, a total of 150 female F0 mice and over 300 male and female rodents from their F1 progeny. We demonstrate that F1 male offsprings of female mice previously exposed to the synthetic estrogen 17α-ethinylestradiol (EE2) in combination with the synthetic progestin Norethindrone, exhibit neurodevelopmental and behavioral differences compared to control mice. Because the EE2 + Norethindrone administration resulted in gene expression changes in the exposed F0 mice ovaries persisting after the end of treatment, it is likely that the synthetic hormone treatment caused changes in the germline cells and that led to altered neurodevelopment in the offsprings. An altered gene expression pattern was discovered in the frontal cortex of male mice from the first offspring (F1.1) at infancy and an ADHD-like hyperactive locomotor behavior was exhibited in young male mice from the second offspring (F1.2) of female mice treated with contraceptive pill doses of EE2 + Norethindrone prior to pregnancy. The intergenerational neurodevelopmental effects of EE2 + Norethindrone treatment were sex specific, predominantly affecting males. Our observations in mice support the hypothesis that the use of synthetic contraceptive hormones is a potential environmental factor impacting the prevalence of human neurodevelopmental disorders. Additionally, our results indicate that contraceptive hormone drug safety assessments may need to be extended to F1 offspring.


Assuntos
Encéfalo/embriologia , Contraceptivos Hormonais/efeitos adversos , Congêneres do Estradiol/efeitos adversos , Exposição Materna/efeitos adversos , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Cognição/efeitos dos fármacos , Etinilestradiol/efeitos adversos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/fisiopatologia , Gravidez
5.
Mol Ther Nucleic Acids ; 19: 1399-1412, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32160709

RESUMO

Knockout of the memory suppressor gene histone deacetylase 2 (Hdac2) in mice elicits cognitive enhancement, and drugs that block HDAC2 have potential as therapeutics for disorders affecting memory. Currently available HDAC2 catalytic activity inhibitors are not fully isoform specific and have short half-lives. Antisense oligonucleotides (ASOs) are drugs that elicit extremely long-lasting, specific inhibition through base pairing with RNA targets. We utilized an ASO to reduce Hdac2 messenger RNA (mRNA) in mice and determined its longevity, specificity, and mechanism of repression. A single injection of the Hdac2-targeted ASO in the central nervous system produced persistent reduction in HDAC2 protein and Hdac2 mRNA levels for 16 weeks. It enhanced object location memory for 8 weeks. RNA sequencing (RNA-seq) analysis of brain tissues revealed that the repression was specific to Hdac2 relative to related Hdac isoforms, and Hdac2 reduction caused alterations in the expression of genes involved in extracellular signal-regulated kinase (ERK) and memory-associated immune signaling pathways. Hdac2-targeted ASOs also suppress a nonpolyadenylated Hdac2 regulatory RNA and elicit direct transcriptional suppression of the Hdac2 gene through stalling RNA polymerase II. These findings identify transcriptional suppression of the target gene as a novel mechanism of action of ASOs.

6.
J Lipid Res ; 58(11): 2139-2146, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28972118

RESUMO

Smith-Lemli-Opitz syndrome is a recessive disorder caused by mutations in 7-dehydrocholesterol reductase (DHCR)7 with a heterozygous (HET) carrier frequency of 1-3%. A defective DHCR7 causes accumulation of 7-dehydrocholesterol (DHC), which is a highly oxidizable and toxic compound. Recent studies suggest that several antipsychotics, including the highly prescribed pharmaceuticals, aripiprazole (ARI) and trazodone (TRZ), increase 7-DHC levels in vitro and in humans. Our investigation was designed to compare the effects of ARI and TRZ on cholesterol (Chol) synthesis in fibroblasts from DHCR7+/- human carriers and controls (CTRs). Six matched pairs of fibroblasts were treated and their sterol profile analyzed by LC-MS. Significantly, upon treatment with ARI and TRZ, the total accumulation of 7-DHC was higher in DHCR7-HET cells than in CTR fibroblasts. The same set of experiments was repeated in the presence of 13C-lanosterol to determine residual Chol synthesis, revealing that ARI and TRZ strongly inhibit de novo Chol biosynthesis. The results suggest that DHCR7 carriers have increased vulnerability to both ARI and TRZ exposure compared with CTRs. Thus, the 1-3% of the population who are DHCR7 carriers may be more likely to sustain deleterious health consequences on exposure to compounds like ARI and TRZ that increase levels of 7-DHC, especially during brain development.


Assuntos
Aripiprazol/farmacologia , Inibidores Enzimáticos/farmacologia , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Trazodona/farmacologia , Adulto , Colesterol/biossíntese , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Síndrome de Smith-Lemli-Opitz/enzimologia , Síndrome de Smith-Lemli-Opitz/genética
7.
Nat Commun ; 7: 12743, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27597321

RESUMO

Neuronal epigenomes, including chromosomal loopings moving distal cis-regulatory elements into proximity of target genes, could serve as molecular proxy linking present-day-behaviour to past exposures. However, longitudinal assessment of chromatin state is challenging, because conventional chromosome conformation capture assays essentially provide single snapshots at a given time point, thus reflecting genome organization at the time of brain harvest and therefore are non-informative about the past. Here we introduce 'NeuroDam' to assess epigenome status retrospectively. Short-term expression of the bacterial DNA adenine methyltransferase Dam, tethered to the Gad1 gene promoter in mouse prefrontal cortex neurons, results in stable G(methyl)ATC tags at Gad1-bound chromosomal contacts. We show by NeuroDam that mice with defective cognition 4 months after pharmacological NMDA receptor blockade already were affected by disrupted chromosomal conformations shortly after drug exposure. Retrospective profiling of neuronal epigenomes is likely to illuminate epigenetic determinants of normal and diseased brain development in longitudinal context.


Assuntos
Genoma , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , Animais , Aberrações Cromossômicas , Cognição , Maleato de Dizocilpina/farmacologia , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Estudos Longitudinais , Memória , Camundongos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , DNA Metiltransferases Sítio Específica (Adenina-Específica) , Coloração e Rotulagem
8.
Neurobiol Dis ; 89: 46-54, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26804030

RESUMO

Major depressive disorder (MDD) is one of the most prevalent major psychiatric disorders with a lifetime prevalence of 17%. Recent evidence suggests MDD is not only a brain dysfunction, but a systemic disease affecting the whole body. Central and peripheral inflammatory changes seem to be a centerpiece of MDD pathology: a subset of patients show elevated blood cytokine and chemokine levels that partially normalize with symptom improvement over the course of anti-depressant treatment. As this inflammatory process in MDD is poorly understood, we hypothesized that the peripheral tissues of MDD patients will respond differently to inflammatory stimuli, resulting in an aberrant transcriptional response to elevated pro-inflammatory cytokines. To test this, we used MDD patient- and control-derived dermal fibroblast cultures to investigate their response to an acute treatment with IL6, IL1ß, TNFα, or vehicle. Following RNA isolation and subsequent cDNA synthesis, quantitative PCR was used to determine the relative expression level of several families of inflammation-responsive genes. Our results showed comparable expression of the tested genes between MDD patients and controls at baseline. In contrast, MDD patient fibroblasts had a diminished transcriptional response to IL6 in all the gene sets tested (oxidative stress response, mitochondrial function, and lipid metabolism). We also found a significant increase in baseline and IL6 stimulated transcript levels of the IL6 receptor gene. This IL6 receptor transcript increase in MDD fibroblasts was accompanied by an IL6 stimulated increase in induction of SOCS3, which dampens IL6 receptor signaling. Altogether our results demonstrate that there is an altered transcriptional response to IL6 in MDD, which may represent one of the molecular mechanisms contributing to disease pathophysiology. Ultimately we hope that these studies will lead to validation of novel MDD drug targets focused on normalizing the altered IL6 response in patients.


Assuntos
Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Fibroblastos/metabolismo , Inflamação/genética , Interleucina-6/metabolismo , Células Cultivadas , Derme/efeitos dos fármacos , Derme/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Inflamação/metabolismo , Interleucina-1beta/administração & dosagem , Interleucina-1beta/metabolismo , Interleucina-6/administração & dosagem , Interleucina-6/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
9.
BMC Genomics ; 16: 606, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26271746

RESUMO

BACKGROUND: The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well. RESULTS: The main findings were: (1) Global gene expression patterns were tightly clustered by postnatal age and brain region; (2) comparing A1 and MG, the total numbers of differentially expressed genes were comparable from P7 to P21, then dropped to nearly half by adulthood; (3) comparing successive age groups, the greatest numbers of differentially expressed genes were found between P7 and P14 in both regions, followed by a steady decline in numbers with age; (4) maturational trajectories in expression levels varied at the single gene level (increasing, decreasing, static, other); (5) between regions, the profiles of single genes were often asymmetric; (6) GSEA revealed that genesets related to neural activity and plasticity were typically upregulated from P7 to adult, while those related to structure tended to be downregulated; (7) GSEA and pathways analysis of selected functional networks were not predictive of expression patterns in the auditory forebrain for all genes, reflecting regional specificity at the single gene level. CONCLUSIONS: Gene expression in the auditory forebrain during postnatal development is in constant flux and becomes increasingly stable with age. Maturational changes are evident at the global through single gene levels. Transcriptome profiles in A1 and MG are distinct at all ages, and differ from other brain regions. The database generated by this study provides a rich foundation for the identification of novel developmental biomarkers, functional gene pathways, and targeted studies of postnatal maturation in the auditory forebrain.


Assuntos
Córtex Auditivo/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Prosencéfalo/crescimento & desenvolvimento , Análise de Sequência de RNA/métodos , Animais , Animais Recém-Nascidos , Córtex Auditivo/metabolismo , Análise por Conglomerados , Bases de Dados Genéticas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Masculino , Camundongos , Prosencéfalo/metabolismo
10.
Biol Psychiatry ; 77(3): 256-265, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25016317

RESUMO

BACKGROUND: Peripheral biomarkers for major psychiatric disorders have been an elusive target for the last half a century. Dermal fibroblasts are a simple, relevant, and much underutilized model for studying molecular processes of patients with affective disorders, as they share considerable similarity of signal transduction with neuronal tissue. METHODS: Cultured dermal fibroblast samples from patients with major depressive disorder (MDD) and matched control subjects (n = 16 pairs, 32 samples) were assayed for genome-wide messenger RNA (mRNA) expression using microarrays. In addition, a simultaneous quantitative polymerase chain reaction-based assessment of >1000 microRNA (miRNA) species was performed. Finally, to test the relationship between the mRNA-miRNA expression changes, the two datasets were correlated with each other. RESULTS: Our data revealed that MDD fibroblasts, when compared with matched control subjects, showed a strong mRNA gene expression pattern change in multiple molecular pathways, including cell-to-cell communication, innate/adaptive immunity, and cell proliferation. Furthermore, the same patient fibroblasts showed altered expression of a distinct panel of 38 miRNAs, which putatively targeted many of the differentially expressed mRNAs. The miRNA-mRNA expression changes appeared to be functionally connected, as the majority of the miRNA and mRNA changes were in the opposite direction. CONCLUSIONS: Our data suggest that combined miRNA-mRNA assessments are informative about the disease process and that analyses of dermal fibroblasts might lead to the discovery of promising peripheral biomarkers of MDD that could be potentially used to aid the diagnosis and allow mechanistic testing of disturbed molecular pathways.


Assuntos
Transtorno Depressivo Maior/metabolismo , Fibroblastos/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Adulto , Células Cultivadas , Transtorno Depressivo Maior/genética , Feminino , Expressão Gênica , Humanos , Masculino , Reação em Cadeia da Polimerase
11.
J Neuroinflammation ; 11: 183, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25374324

RESUMO

BACKGROUND: Maternal immune activation and subsequent interleukin-6 (IL-6) induction disrupt normal brain development and predispose the offspring to developing autism and schizophrenia. While several proteins have been identified as having some link to these developmental disorders, their prevalence is still small and their causative role, if any, is not well understood. However, understanding the metabolic consequences of environmental predisposing factors could shed light on disorders such as autism and schizophrenia. METHODS: To gain a better understanding of the metabolic consequences of IL-6 exposure on developing central nervous system (CNS) cells, we separately exposed developing neuron and astroglia cultures to IL-6 for 2 hours while collecting effluent from our gravity-fed microfluidic chambers. By coupling microfluidic technologies to ultra-performance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS), we were able to characterize the metabolic response of these CNS cells to a narrow window of IL-6 exposure. RESULTS: Our results revealed that 1) the use of this technology, due to its superb media volume:cell volume ratio, is ideally suited for analysis of cell-type-specific exometabolome signatures; 2) developing neurons have low secretory activity at baseline, while astroglia show strong metabolic activity; 3) both neurons and astroglia respond to IL-6 exposure in a cell type-specific fashion; 4) the astroglial response to IL-6 stimulation is predominantly characterized by increased levels of metabolites, while neurons mostly depress their metabolic activity; and 5) disturbances in glycerophospholipid metabolism and tryptophan/kynurenine metabolite secretion are two putative mechanisms by which IL-6 affects the developing nervous system. CONCLUSIONS: Our findings are potentially critical for understanding the mechanism by which IL-6 disrupts brain function, and they provide information about the molecular cascade that links maternal immune activation to developmental brain disorders.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Interleucina-6/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas Analíticas Microfluídicas
12.
Neurobiol Dis ; 63: 210-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24239560

RESUMO

Schizophrenia is a devastating neurodevelopmental disorder that affects approximately 1% of the population. Reduced expression of the 67-kDa protein isoform of glutamic acid decarboxylase (GAD67) is a hallmark of the disease and is encoded by the GAD1 gene. In schizophrenia, GAD67 downregulation occurs in multiple interneuronal subpopulations, including the cannabinoid receptor type 1 positive (CNR1+) cells, but the functional consequences of these disturbances are not well understood. To investigate the role of the CNR1-positive GABA-ergic interneurons in behavioral and molecular processes, we employed a novel, miRNA-mediated transgenic mouse approach. We silenced the Gad1 transcript using a miRNA engineered to specifically target Gad1 mRNA under the control of Cnr1 bacterial artificial chromosome. Behavioral characterization of our transgenic mice showed elevated and persistent conditioned fear associated with an auditory cue and a significantly altered response to an amphetamine challenge. These deficits could not be attributed to sensory deficits or changes in baseline learning and memory. Furthermore, HPLC analyses revealed that Cnr1/Gad1 mice have enhanced serotonin levels, but not dopamine levels in response to amphetamine. Our findings demonstrate that dysfunction of a small subset of interneurons can have a profound effect on behavior and that the GABA-ergic, monoamine, and cannabinoid systems are functionally interconnected. The results also suggest that understanding the function of various interneuronal subclasses might be essential to develop knowledge-based treatment strategies for various mental disorders including schizophrenia and substance abuse.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/citologia , Comportamento Exploratório/fisiologia , Interneurônios/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Anfetamina/farmacologia , Analgésicos/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Psicológico/fisiologia , Cicloexanóis/farmacologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Filtro Sensorial/genética
13.
Exp Cell Res ; 320(2): 343-53, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24246224

RESUMO

Metabolic and oxidative stresses induce physiological adaptation processes, disrupting a finely tuned, coordinated network of gene expression. To better understand the interplay between the mRNA and miRNA transcriptomes, we examined how two distinct metabolic stressors alter the expression profile of human dermal fibroblasts. Primary fibroblast cultures were obtained from skin biopsies of 17 healthy subjects. Metabolic stress was evoked by growing subcultured cells in glucose deprived, galactose enriched (GAL) or lipid reduced, cholesterol deficient (RL) media, and compared to parallel-cultured fibroblasts grown in standard (STD) medium. This was followed by mRNA expression profiling and assessment of >1000 miRNAs levels across all three conditions. The miRNA expression levels were subsequently correlated to the mRNA expression profile. Metabolic stress by RL and GAL both produced significant, strongly correlated mRNA/miRNA changes. At the single gene level four miRNAs (miR-129-3p, miR-146b-5p, miR-543 and miR-550a) showed significant and comparable expression changes in both experimental conditions. These miRNAs appeared to have a significant physiological effect on the transcriptome, as nearly 10% of the predicted targets reported changes at mRNA level. The two distinct metabolic stressors induced comparable changes in the miRNome profile, suggesting a common defensive response of the fibroblasts to altered homeostasis. The differentially expressed miR-129-3p, miR-146b-5p, miR-543 and miR-550a regulated multiple genes (e.g. NGEF, NOVA1, PDE5A) with region- and age-specific transcription in the human brain, suggesting that deregulation of these miRNAs might have significant consequences on CNS function. The overall findings suggest that analysis of stress-induced responses of peripheral fibroblasts, obtained from patients with psychiatric disorders is a promising avenue for future research endeavors.


Assuntos
Fibroblastos/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Estresse Fisiológico/genética , Transcriptoma , Células Cultivadas , Análise por Conglomerados , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo
14.
J Neurosci ; 33(29): 11839-51, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23864674

RESUMO

Little is known about chromosomal loopings involving proximal promoter and distal enhancer elements regulating GABAergic gene expression, including changes in schizophrenia and other psychiatric conditions linked to altered inhibition. Here, we map in human chromosome 2q31 the 3D configuration of 200 kb of linear sequence encompassing the GAD1 GABA synthesis enzyme gene locus, and we describe a loop formation involving the GAD1 transcription start site and intergenic noncoding DNA elements facilitating reporter gene expression. The GAD1-TSS(-50kbLoop) was enriched with nucleosomes epigenetically decorated with the transcriptional mark, histone H3 trimethylated at lysine 4, and was weak or absent in skin fibroblasts and pluripotent stem cells compared with neuronal cultures differentiated from them. In the prefrontal cortex of subjects with schizophrenia, GAD1-TSS(-50kbLoop) was decreased compared with controls, in conjunction with downregulated GAD1 expression. We generated transgenic mice expressing Gad2 promoter-driven green fluorescent protein-conjugated histone H2B and confirmed that Gad1-TSS(-55kbLoop), the murine homolog to GAD1-TSS(-50kbLoop), is a chromosomal conformation specific for GABAergic neurons. In primary neuronal culture, Gad1-TSS(-55kbLoop) and Gad1 expression became upregulated when neuronal activity was increased. We conclude that 3D genome architectures, including chromosomal loopings for promoter-enhancer interactions involved in the regulation of GABAergic gene expression, are conserved between the rodent and primate brain, and subject to developmental and activity-dependent regulation, and disordered in some cases with schizophrenia. More broadly, the findings presented here draw a connection between noncoding DNA, spatial genome architecture, and neuronal plasticity in development and disease.


Assuntos
Glutamato Descarboxilase/genética , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Animais , Antipsicóticos/farmacologia , Células Cultivadas , Cromossomos Humanos Par 2 , Clozapina/farmacologia , Metilação de DNA , Regulação para Baixo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Glutamato Descarboxilase/metabolismo , Haloperidol/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Esquizofrenia/metabolismo
15.
Cell Tissue Res ; 350(3): 401-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22940761

RESUMO

Ceruloplasmin is a protective ferroxidase. Although some studies suggest that plasma ceruloplasmin levels are raised by exercise, the impact of exercise on brain ceruloplasmin is unknown. We have examined whether striatal ceruloplasmin is raised with treadmill exercise and/or is correlated with spontaneous physical activity in rhesus monkeys. Parkinson's disease is characterized by a loss in ceruloplasmin and, similarly, Parkinson's models lead to a loss in antioxidant defenses. Exercise might protect against Parkinson's disease and is known to prevent antioxidant loss in experimental models. We have therefore examined whether treadmill exercise prevents ceruloplasmin loss in monkeys treated unilaterally with the dopaminergic neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). We found that exercise raised ceruloplasmin expression in the caudate and accumbens but not the putamen of intact monkeys. However, putamen ceruloplasmin was correlated with spontaneous activity in a home pen. MPTP alone did not cause unilateral loss of ceruloplasmin but blocked the impact of exercise on ceruloplasmin. Similarly, the correlation between putamen ceruloplasmin and activity was also lost with MPTP. MPTP elicited loss of tyrosine hydroxylase in the treated hemisphere; the remaining tyrosine hydroxylase was correlated with overall daily activity (spontaneous activity plus that induced by the treadmill). Thus, treadmill activity can raise ceruloplasmin but this impact and the link with spontaneous activity are both diminished in Parkinsonian primates. Furthermore, low overall physical activity predicts greater loss of dopaminergic phenotype in MPTP-treated primates. These data have implications for the maintenance of active lifestyles in both healthy and neurodegenerative conditions.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Ceruloplasmina/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/enzimologia , Atividade Motora/fisiologia , Neurotoxinas/uso terapêutico , Animais , Feminino , Macaca mulatta , Atividade Motora/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/enzimologia
16.
J Neurosci ; 32(25): 8633-48, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22723704

RESUMO

Presenilins 1 and 2 (PS1 and PS2) are the catalytic subunits of the γ-secretase complex, and genes encoding mutant PS1 and PS2 variants cause familial forms of Alzheimer's disease. Lee et al. (2010) recently reported that loss of PS1 activity lead to impairments in autophagosomal function as a consequence of lysosomal alkalinization, caused by failed maturation of the proton translocating V0a1 subunit of the vacuolar (H+)-ATPase and targeting to the lysosome. We have reexamined these issues in mammalian cells and in brains of mice lacking PS (PScdko) and have been unable to find evidence that the turnover of autophagic substrates, vesicle pH, V0a1 maturation, or lysosome function is altered compared with wild-type counterparts. Collectively, our studies fail to document a role for presenilins in regulating cellular autophagosomal function. On the other hand, our transcriptome studies of PScdko mouse brains reveal, for the first time, a role for PS in regulating lysosomal biogenesis.


Assuntos
Autofagia/fisiologia , Lisossomos/metabolismo , Presenilina-1/fisiologia , Presenilina-2/fisiologia , Presenilinas/fisiologia , Animais , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Blastocisto/metabolismo , Western Blotting , Catepsina D/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Primers do DNA , Expressão Gênica/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Reação em Cadeia da Polimerase , Presenilina-1/genética , Presenilina-2/genética , Presenilinas/genética , RNA/biossíntese , RNA/genética , RNA Interferente Pequeno/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo
17.
Obesity (Silver Spring) ; 20(3): 692-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22016091

RESUMO

It has been established that weight gain and weight loss are heavily influenced by activity level. In this study, we hypothesized that the motor cortex exhibits a distinct physical activity-associated gene expression profile, which may underlie changes in weight associated with movement. Using DNA microarrays we profiled gene expression in the motor cortex of a group of 14 female rhesus monkeys (Macaca mulatta) with a wide range of stable physical activity levels. We found that neuronal growth factor signaling and nutrient sensing transcripts in the brain were highly correlated with physical activity. A follow-up of AKT3 expression changes (a gene at the apex of neuronal survival and nutrient sensing) revealed increased protein levels of total AKT, phosphorylated AKT, and forkhead box O3 (FOXO3), one of AKT's main downstream effectors. In addition, we successfully validated three other genes via quantitative polymerase chain reaction (qPCR) (cereblon (CRBN), origin recognition complex subunit 4-like, and pyruvate dehydrogenase 4 (PDK4)). We conclude that these genes are important in the physical activity-associated pathway in the motor cortex, and may be critical for physical activity-associated changes in body weight and neuroprotection.


Assuntos
Atividade Motora/genética , Córtex Motor/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/genética , Animais , Feminino , Perfilação da Expressão Gênica , Macaca mulatta/genética , Córtex Motor/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
19.
Mol Neurodegener ; 3: 14, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18834536

RESUMO

BACKGROUND: Familial Alzheimer's disease-linked variants of presenilin (PSEN1 and PSEN2) contribute to the pathophysiology of disease by both gain-of-function and loss-of-function mechanisms. Deletions of PSEN1 and PSEN2 in the mouse forebrain result in a strong and progressive neurodegenerative phenotype which is characterized by both anatomical and behavioral changes. RESULTS: To better understand the molecular changes associated with these morphological and behavioral phenotypes, we performed a DNA microarray transcriptome profiling of the hippocampus and the frontal cortex of the PSEN1/PSEN2 double knock-out mice and littermate controls at five different ages ranging from 2-8 months. Our data suggest that combined deficiencies of PSEN1 and PSEN2 results in a progressive, age-dependent transcriptome signature related to neurodegeneration and neuroinflammation. While these events may progress differently in the hippocampus and frontal cortex, the most critical expression signatures are common across the two brain regions, and involve a strong upregulation of cathepsin and complement system transcripts. CONCLUSION: The observed neuroinflammatory expression changes are likely to be causally linked to the neurodegenerative phenotype observed in mice with compound deletions of PSEN1 and PSEN2. Furthermore, our results suggest that the evaluation of inhibitors of PS/gamma-secretase activity for treatment of Alzheimer's Disease must include close monitoring for signs of calpain-cathepsin system activation.

20.
Neuropsychopharmacol Hung ; 10(1): 9-14, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18771015

RESUMO

To better understand the pathophysiological events associate with suicide in subjects with schizophrenia, we performed a DNA microarray expression profiling of the frontal cortex of subjects with schizophrenia who committed suicide, subjects with schizophrenia who died of non-suicidal causes and matched control subjects. Simultaneous expression profiling for >40,000 genes was performed using HU133A and HU133B Affymetrix oligonucleotide arrays. We conclude that suicide in schizophrenia is associated with a number of gene expression changes in the prefrontal cortex that are distinct from both of that observed in controls and subjects with schizophrenia who did not commit suicide. Furthermore, the observed gene expression signature contains a prefrontal cortical downregulation of the HTR2A serotonin receptor transcript, strengthening previously reported genetic susceptibility reports. As the observed transcript changes are likely developing over days or weeks, these data argue that the molecular predisposition to suicide develops significantly earlier than the act of suicide occurs. Finally, the presented data also strengthens previous reports of neuroimmune transcriptome disturbances in subjects with schizophrenia.


Assuntos
Perfilação da Expressão Gênica , Córtex Pré-Frontal/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Esquizofrenia/metabolismo , Suicídio , Química Encefálica , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Receptor 5-HT2A de Serotonina/genética , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...