Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 12(4): 1163-1166, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29382947

RESUMO

Volatile organic compounds play an important role in microbial interactions. However, little is known about how volatile-mediated interactions modulate biogeochemical processes. In this study, we show the effect of volatile-mediated interaction on growth and functioning of aerobic methane-oxidizing bacteria, grown in co-culture with five different heterotrophs. Both growth and methane oxidation of Methylobacter luteus were stimulated by interaction with specific heterotrophs. In Methylocystis parvus, we observed significant growth promotion, while methane oxidation was inhibited. Volatolomics of the interaction of each of the methanotrophs with Pseudomonas mandelii, revealed presence of a complex blend of volatiles, including dimethylsulfide, dimethyldisulfide, and bicyclic sesquiterpenes. Although the ecological role of the detected compounds remains to be elucidated, our results provide unprecedented insights into interspecific relations and associated volatiles for stimulating methanotroph functioning, which is of substantial environmental and biotechnological significance.


Assuntos
Metano/metabolismo , Processos Heterotróficos , Methylococcaceae/crescimento & desenvolvimento , Methylococcaceae/metabolismo , Methylocystaceae/crescimento & desenvolvimento , Methylocystaceae/metabolismo , Pseudomonas/metabolismo , Compostos Orgânicos Voláteis/metabolismo
2.
J Bacteriol ; 194(15): 4119-20, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22815440

RESUMO

Serratia plymuthica strain PRI-2C is a rhizosphere bacterial strain with antagonistic activity against different plant pathogens. Here we present the 5.39-Mb (G+C content, 55.67%) draft genome sequence of S. plymuthica strain PRI-2C with the aim of providing insight into the genomic basis of its antagonistic activity.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Serratia/genética , Antibiose , Composição de Bases , Dados de Sequência Molecular , Rizosfera , Serratia/isolamento & purificação , Serratia/fisiologia , Microbiologia do Solo
3.
Can J Microbiol ; 52(10): 1006-15, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17110970

RESUMO

Quorum sensing plays a role in the regulation of soft rot diseases caused by the plant pathogenic bacterium Pectobacterium carotovorum subsp. carotovorum. The signal molecules involved in quorum sensing in P. carotovorum subsp. carotovorum belong to the group of N-acyl homoserine lactones (AHLs). In our study, we screened bacteria isolated from the potato rhizosphere for the ability to degrade AHLs produced by P. carotovorum subsp. carotovorum. Six isolates able to degrade AHLs were selected for further studies. According to 16S rDNA sequence analysis and fatty acid methyl ester profiling, the isolates belonged to the genera Ochrobactrum, Rhodococcus, Pseudomonas, Bacillus, and Delftia. For the genera Ochrobactrum and Delftia, for the first time AHL-degrading isolates were found. Data presented in this study revealed for the first time that Ochrobactrum sp. strain A44 showed the capacity to inactivate various synthetic AHL molecules; the substituted AHLs were inactivated with a lower efficiency than the unsubstituted AHLs. Compared with the other isolates, A44 was very effective in the degradation of AHLs produced by P. carotovorum subsp. carotovorum. It was verified by polymerase chain reaction, DNA-DNA hybridization, and a lactone ring reconstruction assay that Ochrobactrum sp. strain A44 did not possess AHL lactonase activity. AHL degradation in Ochrobactrum sp. strain A44 occurred intracellularly; it was not found in the culture supernatant. AHL-degrading activity of A44 was thermo sensitive. Experiments in planta revealed that Ochrobactrum sp. strain A44 significantly inhibited the maceration of potato tuber tissue. Since A44 did not produce antibiotics, the attenuation of the decay might be due to the quenching of quorum- sensing-regulated production of pectinolytic enzymes. The strain can potentially serve to control P. carotovorum subsp. carotovorum in potato.


Assuntos
4-Butirolactona/análogos & derivados , Bactérias/metabolismo , Ochrobactrum/metabolismo , Pectobacterium carotovorum/metabolismo , Microbiologia do Solo , Solanum tuberosum/microbiologia , 4-Butirolactona/metabolismo , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Hidrolases de Éster Carboxílico/genética , DNA Ribossômico/genética , Delftia/isolamento & purificação , Delftia/metabolismo , Concentração de Íons de Hidrogênio , Ochrobactrum/isolamento & purificação , Percepção de Quorum , RNA Ribossômico 16S/genética , Rhodococcus/isolamento & purificação , Rhodococcus/metabolismo
4.
Environ Microbiol ; 8(2): 233-46, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16423012

RESUMO

The extent of soil microbial diversity is seen to be critical to the maintenance of soil health and quality. Different agricultural practices are able to affect soil microbial diversity and thus the level of suppressiveness of plant diseases. In a 4-year field experiment, we investigated the microbial diversity of soil under different agricultural regimes. We studied permanent grassland, grassland turned into arable land, long-term arable land and arable land turned into grassland. The diversity of microbial communities was described by using cultivation-based and cultivation-independent methods. Both types of methods revealed differences in the diversities of soil microbial communities between different treatments. The treatments with higher above-ground biodiversity generally maintained higher levels of microbial diversity. Moreover, a positive correlation between suppression of Rhizoctonia solani AG3 and microbial diversity was observed. Permanent (species-rich) grassland and grassland turned into maize stimulated higher microbial diversities and higher levels of suppressiveness of R. solani AG3 compared with the long-term arable land. Effects of agricultural practices on Bacillus and Pseudomonas communities were also observed and clear correlations between the levels of suppressiveness and the diversities of these bacterial groups were found. This study highlighted the importance of agricultural management regime for soil microbial community structure and diversity as well as the level of soil suppressiveness.


Assuntos
Agricultura , Poaceae/crescimento & desenvolvimento , Rhizoctonia/crescimento & desenvolvimento , Microbiologia do Solo , Agricultura/métodos , DNA Bacteriano/análise , DNA Fúngico/análise , Reação em Cadeia da Polimerase , Microbiologia do Solo/normas , Zea mays/crescimento & desenvolvimento
5.
Annu Rev Phytopathol ; 42: 243-70, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15283667

RESUMO

An increasing interest has emerged with respect to the importance of microbial diversity in soil habitats. The extent of the diversity of microorganisms in soil is seen to be critical to the maintenance of soil health and quality, as a wide range of microorganisms is involved in important soil functions. This review focuses on recent data relating how plant type, soil type, and soil management regime affect the microbial diversity of soil and the implication for the soil's disease suppressiveness. The two main drivers of soil microbial community structure, i.e., plant type and soil type, are thought to exert their function in a complex manner. We propose that the fact that in some situations the soil and in others the plant type is the key factor determining soil microbial diversity is related to the complexity of the microbial interactions in soil, including interactions between microorganisms and soil and microorganisms and plants. A conceptual framework, based on the relative strengths of the shaping forces exerted by plant and soil versus the ecological behavior of microorganisms, is proposed.


Assuntos
Ecossistema , Plantas/microbiologia , Solo/análise , Agricultura , Animais , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Doenças das Plantas/microbiologia , Microbiologia do Solo
6.
Microb Ecol ; 45(3): 302-16, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12632212

RESUMO

A PCR system for studying the diversity of species of Bacillus and related taxa directly from soil was developed. For this purpose, a specific 24-bp forward primer located around position 110 of the 16S ribosomal RNA gene was designed and combined with a reverse bacterial primer located at the end of the gene. The specificity of this PCR system for bacilli and related taxons was confirmed on the basis of tests with diverse strains as well as with soil DNA. Analysis of a soil DNA derived clone library showed that the amplified fragments affiliated exclusively with sequences of gram-positive bacteria, with up to 95% of the sequences originating from putative Bacillus species. In particular, sequences affiliated to those of B. mycoides, B. pumilus, B. megaterium, B. thuringiensis, and B. firmus, as well as to related taxa such as Paenibacillus, were obtained. A minority, i.e., less than 6%, of the clones affiliated with other gram-positive bacteria, such as Arthrobacter spp., Frankia spp., and uncultured gram-positives. The amplified fragments were used as templates for a second PCR using bacterial 16S rDNA primers, yielding PCR products of about 410 bp, which were separated by denaturing gradient gel electrophoresis (DGGE). Amplicons indicating Bacillus spp. were found in the gel between 45% and roughly 60% denaturant, whereas those representing other, high-G+C% bacteria, were localized in gel regions with denaturant concentrations exceeding about 60%, thus allowing the distinction between these two groups of sequences. We applied this system to compare the group-specific diversity in bacterial communities in an agricultural soil under different regimes, i.e., permanent grassland, grassland recently turned to arable land, and arable land under agricultural rotation. Differences in the Bacillus-related community structures between the treatments were clearly detected. Higher diversities, as judged by Shannon-Weaver indices calculated on the basis of the molecular profiles, were consistently observed in the permanent grassland and the grassland turned into arable land, as compared to the arable land.


Assuntos
Bacillus/classificação , Microbiologia do Solo , Bacillus/genética , Sequência de Bases , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese , Variação Genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase
7.
Microb Ecol ; 41(4): 369-383, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12032611

RESUMO

The diversity of endophytic bacterial populations of potato (Solanum tuberosum cv Desirée) was assessed using a combination of dilution plating of plant macerates followed by isolation and characterization of isolates, and direct PCR-DGGE on the basis of DNA extracted from plants. The culturable endophytic bacterial communities detected in potato stem bases as well as in roots were in most cases on the order 103 to 105 CFU g?1 of fresh plant tissue. Dilution plating revealed that a range of bacterial types dominated these populations. Dominant isolates fell into the a and g subgroups of the Proteobacteria, as well as in the Flavobacterium/Cytophaga group. Different representatives of the Firmicutes were also found. The most frequently isolated strains (>5% of the total) were characterized as different Pseudomonas spp. (including P. aureofaciens, P. corrugata, and P. putida), Agrobacterium radiobacter, Stenotrophomonas maltophilia, and Flavobacterium resinovorans, using fatty acid methyl ester (FAME) analysis and/or sequencing of their partial 16S ribosomal RNA genes. Other Proteobacteria or Firmicutes were also found, albeit infrequently, and mainly in potato stem tissue. The fate of three putative potato endophytes, Stenotrophomonas maltophilia, Bacillus sp., and Sphingomonas paucimobilis, was monitored following their release into potato plants via injection, via root dipping, or via the soil. Following stem injection, the S. maltophilia and Bacillus inoculants could be tracked over time periods of, respectively, 22 and 1 day(s) by dilution plating as well as via PCR-DGGE. However, only S. maltophilia was able to colonize, and persist in, plant tissue from soil or dipped roots. S. paucimobilis was never recovered from the plant irrespective of the mode of introduction. The diversity of the indigenous bacterial flora associated with potato was then monitored via PCR-DGGE. The patterns obtained revealed the existence of bacterial communities of limited complexity, with communities from potato stems typically differing from those from stem peel and roots. Evidence was obtained for the endophytic occurrence of a range of organisms falling into the a, b, and g subgroups of the Proteobacteria as well as in the Firmicutes. Several of the sequences found matched those from isolates, suggesting that the molecular evidence reported culturable organisms. However, a number of sequences did not have matching sequences from isolates, suggesting that non-culturable or as-yet-uncultured endophytic organisms were being detected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...