Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0103124, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916308

RESUMO

Cryptococcus neoformans causes cryptococcosis, one of the most prevalent fungal diseases, generally characterized by meningitis. There is a limited and not very effective number of drugs available to combat this disease. In this manuscript, we show the host defense peptide mimetic brilacidin (BRI) as a promising antifungal drug against C. neoformans. BRI can affect the organization of the cell membrane, increasing the fungal cell permeability. We also investigated the effects of BRI against the model system Saccharomyces cerevisiae by analyzing libraries of mutants grown in the presence of BRI. In S. cerevisiae, BRI also affects the cell membrane organization, but in addition the cell wall integrity pathway and calcium metabolism. In vivo experiments show BRI significantly reduces C. neoformans survival inside macrophages and partially clears C. neoformans lung infection in an immunocompetent murine model of invasive pulmonary cryptococcosis. We also observed that BRI interacts with caspofungin (CAS) and amphotericin (AmB), potentiating their mechanism of action against C. neoformans. BRI + CAS affects endocytic movement, calcineurin, and mitogen-activated protein kinases. Our results indicate that BRI is a novel antifungal drug against cryptococcosis. IMPORTANCE: Invasive fungal infections have a high mortality rate causing more deaths annually than tuberculosis or malaria. Cryptococcosis, one of the most prevalent fungal diseases, is generally characterized by meningitis and is mainly caused by two closely related species of basidiomycetous yeasts, Cryptococcus neoformans and Cryptococcus gattii. There are few therapeutic options for treating cryptococcosis, and searching for new antifungal agents against this disease is very important. Here, we present brilacidin (BRI) as a potential antifungal agent against C. neoformans. BRI is a small molecule host defense peptide mimetic that has previously exhibited broad-spectrum immunomodulatory/anti-inflammatory activity against bacteria and viruses. BRI alone was shown to inhibit the growth of C. neoformans, acting as a fungicidal drug, but surprisingly also potentiated the activity of caspofungin (CAS) against this species. We investigated the mechanism of action of BRI and BRI + CAS against C. neoformans. We propose BRI as a new antifungal agent against cryptococcosis.

2.
PeerJ ; 12: e17117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500532

RESUMO

Mammalian models, such as murine, are used widely in pathophysiological studies because they have a high degree of similarity in body temperature, metabolism, and immune response with humans. However, non-vertebrate animal models have emerged as alternative models to study the host-pathogen interaction with minimal ethical concerns. Galleria mellonella is an alternative model that has proved useful in studying the interaction of the host with either bacteria or fungi, performing drug testing, and assessing the immunological response to different microorganisms. The G. mellonella immune response includes cellular and humoral components with structural and functional similarities to the immune effectors found in higher vertebrates, such as humans. An important humoral effector stimulated during infections is apolipophorin III (apoLp-III), an opsonin characterized by its lipid and carbohydrate-binding properties that participate in lipid transport, as well as immunomodulatory activity. Despite some parameters, such as the measurement of phenoloxidase activity, melanin production, hemocytes counting, and expression of antimicrobial peptides genes are already used to assess the G. mellonella immune response to pathogens with different virulence degrees, the apoLp-III quantification remains to be a parameter to assess the immune response in this invertebrate. Here, we propose an immunological tool based on an enzyme-linked immunosorbent assay that allows apoLp-III quantification in the hemolymph of larvae challenged with pathogenic agents. We tested the system with hemolymph coming from larvae infected with Escherichia coli, Candida albicans, Sporothrix schenckii, Sporothrix globosa, and Sporothrix brasiliensis. The results revealed significantly higher concentrations of apoLp-III when each microbial species was inoculated, in comparison with untouched larvae, or inoculated with phosphate-buffered saline. We also demonstrated that the apoLp-III levels correlated with the strains' virulence, which was already reported. To our knowledge, this is one of the first attempts to quantify apoLp-III, using a quick and easy-to-use serological technique.


Assuntos
Mariposas , Humanos , Animais , Camundongos , Apolipoproteínas/química , Larva , Interações Hospedeiro-Patógeno , Mamíferos/metabolismo
3.
Infect Drug Resist ; 17: 171-185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38268929

RESUMO

Fungal infections represent a constant and growing menace to public health. This concern is due to the emergence of new fungal species and the increase in antifungal drug resistance. Mycoses caused by Candida species are among the most common nosocomial infections and are associated with high mortality rates when the infection affects deep-seated organs. Candida metapsilosis is part of the Candida parapsilosis complex and has been described as part of the oral microbiota of healthy individuals. Within the complex, this species is considered the least virulent; however, the prevalence has been increasing in recent years, as well as an increment in the resistance to some antifungal drugs. One of the main concerns of candidiasis caused by this species is the wide range of clinical manifestations, ranging from tissue colonization to superficial infections, and in more severe cases it can spread, which makes diagnosis and treatment difficult. The study of virulence factors of this species is limited, however, proteomic comparisons between species indicate that virulence factors in this species could be similar to those already described for C. albicans. However, differences may exist, taking into account changes in the lifestyle of the species. Here, we provide a detailed review of the current literature about this organism, the caused disease, and some sharing aspects with other members of the complex, focusing on its biology, virulence factors, the host-fungus interaction, the identification, diagnosis, and treatment of infection.

4.
Infect Drug Resist ; 16: 4817-4834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520448

RESUMO

Background: Sporotrichosis is a mycosis frequently caused by Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. The cell wall is a species-specific fungal structure with a direct role in activating the host's immune response. The current knowledge about anti-Sporothrix immunity comes from studies using S. schenckii or S. brasiliensis and murine cells. Macrophages and dendritic cells detect and eliminate pathogens, and although the function of these cells links innate with adaptive immunity, little is known about their interaction with Sporothrix spp. Methods: S. schenckii, S. brasiliensis, and S. globosa conidia or yeast-like cells were co-incubated with human monocyte-derived macrophages or dendritic cells, and the phagocytosis and cytokine stimulation were assessed. These interactions were also performed in the presence of specific blocking agents of immune receptors or fungal cells with altered walls to analyze the contribution of these molecules to the immune cell-fungus interaction. Results: Both types of immune cells phagocytosed S. globosa conidia and yeast-like cells to a greater extent, followed by S. brasiliensis and S. schenckii. Furthermore, when the wall internal components were exposed, the phagocytosis level increased for S. schenckii and S. brasiliensis, in contrast to S. globosa. Thus, the cell wall components have different functions during the interaction with macrophages and dendritic cells. S. globosa stimulated an increased proinflammatory response when compared to the other species. In macrophages, this was a dectin-1-, mannose receptor-, and TLR2-dependent response, but dectin-1- and TLR2-dependent stimulation in dendritic cells. For S. schenckii and S. brasiliensis, cytokine production was dependent on the activation of TLR4, CR3, and DC-SIGN. Conclusion: The results of this study indicate that these species are recognized by immune cells differently and that this may depend on both the structure and cell wall organization of the different morphologies.

5.
J Fungi (Basel) ; 9(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37108903

RESUMO

Sporotrichosis is a human and animal fungal infection distributed worldwide that is caused by the thermodimorphic species of the Sporothrix pathogenic clade, which includes Sporothrix brasiliensis, Sporothrix schenckii, and Sporothrix globosa. The cell wall composition and the immune response against the Sporothrix species have been studied mainly in S. brasiliensis and S. schenckii, whilst little is known about the S. globosa cell wall and the immune response that its components trigger. Therefore, in this study, we aimed to analyze the cell wall composition of S. globosa in three morphologies (germlings, conidia, and yeast-like cells) and the differences in cytokine production when human peripheral blood mononuclear cells (PBMCs) interact with these morphotypes, using S. schenckii and S. brasiliensis as a comparison. We found that S. globosa conidia and yeast-like cells have a higher cell wall chitin content, while all three morphologies have a higher ß-1,3-glucan content, which was found most exposed at the cell surface when compared to S. schenckii and S. brasiliensis. In addition, S. globosa has lower levels of mannose- and rhamnose-based glycoconjugates, as well as of N- and O-linked glycans, indicating that this fungal cell wall has species-specific proportions and organization of its components. When interacting with PBMCs, S. brasiliensis and S. globosa showed a similar cytokine stimulation profile, but with a higher stimulation of IL-10 by S. globosa. Additionally, when the inner cell wall components of S. globosa were exposed at the surface or N- and O-glycans were removed, the cytokine production profile of this species in its three morphotypes did not significantly change, contrasting with the S. schenckii and S. brasiliensis species that showed different cytokine profiles depending on the treatment applied to the walls. In addition, it was found that the anti-inflammatory response stimulated by S. globosa was dependent on the activation of dectin-1, mannose receptor, and TLR2, but not TLR4. All of these results indicate that the cell wall composition and structure of the three Sporothrix species in the three morphologies are different, affecting their interaction with human PBMCs and generating species-specific cytokine profiles.

6.
PeerJ ; 10: e14001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117533

RESUMO

Moonlighting proteins represent an intriguing area of cell biology, due to their ability to perform two or more unrelated functions in one or many cellular compartments. These proteins have been described in all kingdoms of life and are usually constitutively expressed and conserved proteins with housekeeping functions. Although widely studied in pathogenic bacteria, the information about these proteins in pathogenic fungi is scarce, but there are some reports of their functions in the etiological agents of the main human mycoses, such as Candida spp., Paracoccidioides brasiliensis, Histoplasma capsulatum, Aspergillus fumigatus, Cryptococcus neoformans, and Sporothrix schenckii. In these fungi, most of the described moonlighting proteins are metabolic enzymes, such as enolase and glyceraldehyde-3-phosphate dehydrogenase; chaperones, transcription factors, and redox response proteins, such as peroxiredoxin and catalase, which moonlight at the cell surface and perform virulence-related processes, contributing to immune evasion, adhesions, invasion, and dissemination to host cells and tissues. All moonlighting proteins and their functions described in this review highlight the limited information about this biological aspect in pathogenic fungi, representing this a relevant opportunity area that will contribute to expanding our current knowledge of these organisms' pathogenesis.


Assuntos
Cryptococcus neoformans , Micoses , Paracoccidioides , Humanos , Micoses/microbiologia , Virulência , Histoplasma
7.
J Fungi (Basel) ; 8(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35628701

RESUMO

The ongoing COVID-19 pandemic has quickly become a health threat worldwide, with high mortality and morbidity among patients with comorbidities. This viral infection promotes the perfect setting in patients for the development of opportunistic infections, such as those caused by fungi. Mucormycosis, a rare but deadly fungal infection, has recently increased its incidence, especially in endemic areas, since the onset of the pandemic. COVID-19-associated mucormycosis is an important complication of the pandemic because it is a mycosis hard to diagnose and treat, causing concern among COVID-19-infected patients and even in the already recovered population. The risk factors for the development of mucormycosis in these patients are related to the damage caused by the SARS-CoV-2 itself, the patient's overstimulated immune response, and the therapy used to treat COVID-19, causing alterations such as hyperglycemia, acidosis, endothelial and lung damage, and immunosuppression. In this review, the molecular aspects of mucormycosis and the main risk factors for the development of COVID-19-associated mucormycosis are explained to understand this virus-fungi-host interaction and highlight the importance of this neglected mycosis.

8.
J Fungi (Basel) ; 8(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628784

RESUMO

The fungal cell wall is an attractive structure to look for new antifungal drug targets and for understanding the host-fungus interaction. Sporothrix schenckii is one of the main causative agents of both human and animal sporotrichosis and currently is the species most studied of the Sporothrix genus. The cell wall of this organism has been previously analyzed, and rhamnoconjugates are signature molecules found on the surface of both mycelia and yeast-like cells. Similar to other reactions where sugars are covalently linked to other sugars, lipids, or proteins, the rhamnosylation process in this organism is expected to involve glycosyltransferases with the ability to transfer rhamnose from a sugar donor to the acceptor molecule, i.e., rhamnosyltransferases. However, no obvious rhamnosyltransferase has thus far been identified within the S. schenckii proteome or genome. Here, using a Hidden Markov Model profile strategy, we found within the S. schenckii genome five putative genes encoding for rhamnosyltransferases. Expression analyses indicated that only two of them, named RHT1 and RHT2, were significantly expressed in yeast-like cells and during interaction with the host. These two genes were heterologously expressed in Escherichia coli, and the purified recombinant proteins showed rhamnosyltransferase activity, dependent on the presence of UDP-rhamnose as a sugar donor. To the best of our knowledge, this is the first report about rhamnosyltransferases in S. schenckii.

9.
Infect Drug Resist ; 15: 2067-2090, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498634

RESUMO

Sporotrichosis is an important subcutaneous mycosis with high prevalence and threat to human and animal health worldwide. Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa are the main etiological agents of this disease; and even though many efforts have been made recently to understand the Sporothrix-host interaction, little is known about S. globosa, an underestimated species. This organism shows the lowest virulence among the members of the Sporothrix pathogenic clade and represents an important pathogenic agent due to its global distribution. Here, we offer a review with all the known information about S. globosa, including its genome and proteomic information, and compare it with S. schenckii and S. brasiliensis, to explain the differences observed among these species, in terms of virulence, the host immune response, and the antifungal sensitivity. Also, we provide the gene prediction of some S. globosa putative virulence factors.

10.
Front Fungal Biol ; 3: 833111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746241

RESUMO

Sporotrichosis is a worldwide distributed subcutaneous mycosis that affects mammals, including human beings. The infection is caused by members of the Sporothrix pathogenic clade, which includes Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. The fungus can be acquired through traumatic inoculation of conidia growing in vegetal debris or by zoonotic transmission from sick animals. Although is not considered a life-threatening disease, it is an emergent health problem that affects mostly immunocompromised patients. The sporotrichosis causative agents differ in their virulence, host range, and sensitivity to antifungal drugs; therefore, it is relevant to understand the molecular bases of their pathogenesis, interaction with immune effectors, and mechanisms to acquired resistance to antifungal compounds. Murine models are considered the gold standard to address these questions; however, some alternative hosts offer numerous advantages over mammalian models, such as invertebrates like Galleria mellonella and Tenebrio molitor, or ex vivo models, which are useful tools to approach questions beyond virulence, without the ethical or budgetary features associated with the use of animal models. In this review, we analyze the different models currently used to study the host-Sporothrix interaction.

11.
J Fungi (Basel) ; 7(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34829247

RESUMO

Sporothrixschenckii is one of the etiological agents of sporotrichosis, a worldwide-distributed subcutaneous mycosis. Its cell wall contains a glycoconjugate composed of rhamnose, mannose, glucuronic acid, and proteins, named peptidorhamnomannan, which harbors important Sporothrix-specific immunogenic epitopes. Although the peptidorhamnomannan carbohydrate moiety has been extensively studied, thus far, little is known about the protein core. Here, using LC-MS/MS, we analyzed the S.schenckii peptidorhamnomannan peptide fraction and generated mass signals of 325 proteins, most of them likely to be moonlighting proteins. Among the identified proteins, chaperonin GroEL/Hsp60 and the uncharacterized protein Pap1 were selected for further analysis. Both proteins were heterologously expressed in bacteria, and they showed adhesive properties to the extracellular matrix proteins laminin, elastin, fibrinogen, and fibronectin, although Pap1 also was bound to type-I and type-II collagen. The inoculation of concentrations higher than 40 µg of these proteins, separately, increased immune effectors in the hemolymph of Galleriamellonella larvae and protected animals from an S.schenckii lethal challenge. These observations were confirmed when yeast-like cells, pre-incubated with anti-rHsp60 or anti-rPap1 antibodies were used to inoculate larvae. The animals inoculated with pretreated cells showed increased survival rates when compared to the control groups. In conclusion, we report that Hsp60 and Pap1 are part of the cell wall peptidorhamnomannan, can bind extracellular matrix components, and contribute to the S.schenckii virulence. To our knowledge, this is the first report about moonlighting protein in the S.schenckii cell wall with an important role during the pathogen-host interaction.

12.
J Fungi (Basel) ; 7(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34682296

RESUMO

Protein glycosylation is a highly conserved post-translational modification among organisms. It plays fundamental roles in many biological processes, ranging from protein trafficking and cell adhesion to host-pathogen interactions. According to the amino acid side chain atoms to which glycans are linked, protein glycosylation can be divided into two major categories: N-glycosylation and O-glycosylation. However, there are other types of modifications such as the addition of GPI to the C-terminal end of the protein. Besides the importance of glycoproteins in biological functions, they are a major component of the fungal cell wall and plasma membrane and contribute to pathogenicity, virulence, and recognition by the host immunity. Given that this structure is absent in host mammalian cells, it stands as an attractive target for developing selective compounds for the treatment of fungal infections. This review focuses on describing the relationship between protein glycosylation and the host-immune interaction in medically relevant fungal species.

13.
Infect Drug Resist ; 14: 2059-2072, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113132

RESUMO

BACKGROUND: Sporotrichosis is an increasing threat for humans, affecting mainly skin and subcutaneous tissues but that can cause disseminated infection in immunocompromised patients. Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa are the main etiological agents of this mycosis, and each species show different virulence levels. The gold standard to assess fungal virulence is the mouse model that is expensive and time-consuming. Thus, invertebrate models have been reported as an alternative for the evaluation of fungal virulence. Here, we assessed whether Tenebrio molitor larvae could be a new alternative to study Sporothrix spp. virulence. METHODS: T. molitor larvae were inoculated with different doses of S. schenckii, S. brasiliensis, and S. globosa, and animal mortality, cytotoxicity, and immunological parameters were analyzed, including the ability to stimulate immunological priming. RESULTS: Mortality curves demonstrated that yeast-like cells were the best fungal morphology to kill larvae and showed a similar ranking in virulence than that reported in other animal models, ie, being S. brasiliensis and S. globosa the species with the highest and lowest virulence, respectively. The usefulness of this model was validated with the analysis of several S. schenckii strains with different virulence degrees, and changes in cytotoxicity, humoral and cellular immunological parameters. Low-virulence strains stimulated low levels of cytotoxicity, phenoloxidase activity, and hemocyte countings, and these immunological cells poorly uptake fungi. Moreover, using recombinant Gp70 from S. schenckii immunological priming was stimulated in larvae and this protected against a lethal dose of fungal cells from any of the three species under study. CONCLUSION: The study demonstrated that T. molitor larvae are an appropriate alternative invertebrate model to analyze the virulence of S. schenckii, S. brasiliensis, and S. globosa. Additionally, hemocyte levels, phenoloxidase activity, cytotoxicity, uptake by hemocytes, and immunological priming are biological parameters that can be used to study the Sporothrix-T. molitor interaction.

14.
J Fungi (Basel) ; 6(4)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260702

RESUMO

Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa are etiological agents of sporotrichosis, a human subcutaneous mycosis. Although the protocols to evaluate Sporothrix virulence in animal models are well described, the cell preparation before inoculation is not standardized, and several culturing media are used to grow yeast-like cells. Here, we found that carbon or nitrogen limitation during fungal cell preparation negatively impacted the ability of S. schenckii and S. brasiliensis to kill Galleria mellonella larvae, but not S. globosa. The fungal growth conditions associated with the short median survival of animals were accompanied by increased hemocyte countings, phenoloxidase activity, and cytotoxicity. The fungal growth under carbon or nitrogen limitation also affected the cell wall composition of both S. schenckii and S. brasiliensis and showed increased exposure of ß-1,3-glucan at the cell surface, while those growing conditions had a minimal impact on the S.globosa wall, which had higher levels of this polysaccharide exposed on the wall regardless of the culture condition. This polysaccharide exposure was linked to the increased ability of insect hemocytes to uptake fungal cells, suggesting that this is one of the mechanisms behind the lower virulence of S.globosa or cells from the other species grown in carbon or nitrogen limitation.

15.
J Fungi (Basel) ; 6(3)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867152

RESUMO

Fungal infections are a serious and increasing threat for human health, and one of the most frequent etiological agents for systemic mycoses is Candida spp. The gold standard to assess Candida virulence is the mouse model of systemic candidiasis, a restrictive, expensive, and time-consuming approach; therefore, invertebrate models have been proposed as alternatives. Galleria mellonella larvae have several traits that make them good candidates to study the fungal virulence. Here, we showed that a reduction in circulating hemocytes, increased melanin production, phenoloxidase, and lactate dehydrogenase activities were observed at 12 and 24 h postinoculation of highly virulent Candidatropicalis strains, while minimal changes in these parameters were observed in low-virulent strains. Similarly, the most virulent species Candida albicans, Candida tropicalis, Candida auris, Candida parapsilosis, and Candida orthopsilosis have led to significant changes in those parameters; while the low virulent species Candida guilliermondii, Candida krusei, and Candida metapsilosis induced modest variations in these immunological and cytotoxicity parameters. Since changes in circulating hemocytes, melanin production, phenoloxidase and lactate dehydrogenase activities showed a correlation with the larval median survival rates at 12 and 24 h postinoculation, we proposed them as candidates for early virulence predictors in G. mellonella.

16.
Curr Protein Pept Sci ; 21(3): 245-264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889486

RESUMO

By being the first point of contact of the fungus with the host, the cell wall plays an important role in the pathogenesis, having many molecules that participate as antigens that are recognized by immune cells, and also that help the fungus to establish infection. The main molecules reported to trigger an immune response are chitin, glucans, oligosaccharides, proteins, melanin, phospholipids, and others, being present in the principal pathogenic fungi with clinical importance worldwide, such as Histoplasma capsulatum, Paracoccidioides brasiliensis, Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Blastomyces dermatitidis, and Sporothrix schenckii. Knowledge and understanding of how the immune system recognizes and responds to fungal antigens are relevant for the future research and development of new diagnostic tools and treatments for the control of mycosis caused by these fungi.


Assuntos
Estruturas Fúngicas/imunologia , Sistema Imunitário/imunologia , Animais , Antígenos de Fungos/imunologia , Parede Celular/imunologia , Humanos
17.
Curr Protein Pept Sci ; 21(3): 295-312, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31589121

RESUMO

Sporothrix schenckii is one of the etiological agents of sporotrichosis, a fungal infection distributed worldwide. Both, the causative organism and the disease have currently received limited attention by the medical mycology community, most likely because of the low mortality rates associated with it. Nonetheless, morbidity is high in endemic regions and the versatility of S. schenckii to cause zoonosis and sapronosis has attracted attention. Thus far, virulence factors associated with this organism are poorly described. Here, comparing the S. schenckii genome sequence with other medically relevant fungi, genes involved in morphological change, cell wall synthesis, immune evasion, thermotolerance, adhesion, biofilm formation, melanin production, nutrient uptake, response to stress, extracellular vesicle formation, and toxin production are predicted and discussed as putative virulence factors in S. schenckii.


Assuntos
Proteínas Fúngicas/metabolismo , Sporothrix/metabolismo , Esporotricose/metabolismo , Fatores de Virulência/metabolismo , Proteínas Fúngicas/genética , Sporothrix/citologia , Sporothrix/genética , Esporotricose/genética , Fatores de Virulência/genética
18.
Infect Drug Resist ; 12: 783-794, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31040708

RESUMO

BACKGROUND: The deep-seated infections caused by the Candida genus are associated with a high mortality rate, and Candida albicans is the most frequent species associated with these diseases. The fungal wall is composed of macromolecules not synthesized by the host, and therefore is a source of ligands recognized by innate immune cells. METHODS: We performed a comparative study analyzing the cell wall composition and organization of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris, along with their ability to stimulate cytokine production and phagocytosis by human innate immune cells. RESULTS: We found that the wall of these species had the basic components already described in C. albicans, with most of the chitin and b1,3-glucan located underneath the mannan layer. However, the walls of C. krusei and C. auris were rich in chitin and the former had a lower content of mannans. C. guilliermondii contained changes in the mannan and the b1,3-glucan levels. These species were differentially phagocytosed by human macrophages and stimulated cytokine production in a dectin-1-dependent pathway. C. krusei showed the most significant changes in the tested parameters, whereas C. auris behaved like C. albicans. CONCLUSION: Our results suggest that the cell wall and innate immune recognition of C. tropicalis, C. guilliermondii, C. krusei, and Candida auris is different from that reported for C. albicans.

19.
Future Microbiol ; 14: 397-410, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30854893

RESUMO

AIM: Sporothrix schenckii is the causative agent of sporotrichosis. A 70-kDa glycoprotein, Gp70, is a candidate for the development of prophylactic alternatives to control the disease, and its gene (GP70) is predicted to encode for a protein of 43 kDa, contrasting with the molecular weight of the native protein. MATERIALS & METHODS: The GP70 was expressed in bacteria, the recombinant protein purified, used in immunoassays and injected to Galleria mellonella. RESULTS & CONCLUSION: The recombinant protein was detected by anti-Gp70 antibodies, confirming that the Gp70 backbone is a 43-kDa peptide. This protein showed enzyme activity of cyclase and was recognized by sera of patients with sporotrichosis. Although it was not useful for serodiagnosis of sporotrichosis, it conferred protection to animals against experimental sporotrichosis.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Glicoproteínas/imunologia , Sporothrix/genética , Esporotricose/microbiologia , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/química , Expressão Gênica , Glicoproteínas/química , Glicoproteínas/genética , Humanos , Peso Molecular , Mariposas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sporothrix/imunologia , Esporotricose/imunologia
20.
Infect Drug Resist ; 11: 903-913, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013373

RESUMO

Human fungal infections remain a major challenge in medicine. Only a limited number of antifungal drugs are available, which are often related to severe adverse effects. In addition, there is an increased emergence related to resistant strains, which makes imperative to understand the host-pathogen interactions as well as to develop alternative treatments. Host innate and adaptive immunity play a crucial role controlling fungal infections; therefore, vaccines are a viable tool to prevent and treat fungal pathogens. Innate immunity is triggered by the interaction between the cell surface pattern recognition receptors (PRRs) and the pathogen-associated molecular patterns (PAMPs). Such an initial immunological response is yet little understood in fungal infections, in part due to the complexity and plasticity of the fungal cell walls. Described host cell-fungus interactions and antigenic molecules are addressed in this paper. Furthermore, antigens found in the cell wall and capsule, including peptides, glycoproteins, glycolipids, and glycans, have been used to trigger specific immune responses, and an increased production of antibodies has been observed when attached to immunogenic molecules. The recent biotechnological advances have allowed the development of vaccines against viral and bacterial pathogens with positive results; therefore, this technology has been applied to develop anti-fungal vaccines. Passive immunization has also emerged as an appealing alternative to treat disseminated mycosis, especially in immunocompromised patients. Those approaches have a long way to be seen in clinical cases. However, all studies discussed here open the possibility to have access to new therapies to be applied alone or in combination with current antifungal drugs. Herein, the state of the art of fungal vaccine developments is discussed in this review, highlighting new advances against Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, Paracoccidioides brasiliensis, and Sporothrix spp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...