Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36980430

RESUMO

This paper uses EEG data to introduce an approach for classifying right and left-hand classes in Motor Imagery (MI) tasks. The Kernel Cross-Spectral Functional Connectivity Network (KCS-FCnet) method addresses these limitations by providing richer spatial-temporal-spectral feature maps, a simpler architecture, and a more interpretable approach for EEG-driven MI discrimination. In particular, KCS-FCnet uses a single 1D-convolutional-based neural network to extract temporal-frequency features from raw EEG data and a cross-spectral Gaussian kernel connectivity layer to model channel functional relationships. As a result, the functional connectivity feature map reduces the number of parameters, improving interpretability by extracting meaningful patterns related to MI tasks. These patterns can be adapted to the subject's unique characteristics. The validation results prove that introducing KCS-FCnet shallow architecture is a promising approach for EEG-based MI classification with the potential for real-world use in brain-computer interface systems.

2.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35074827

RESUMO

Collaboration in neuroscience is impeded by the difficulty of sharing primary data, results, and software across labs. Here, we introduce Neuroscience Data Interface (NDI), a platform-independent standard that allows an analyst to use and create software that functions independently from the format of the raw data or the manner in which the data are organized into files. The interface is rooted in a simple vocabulary that describes common apparatus and storage devices used in neuroscience experiments. Results of analyses, and analyses of analyses, are stored as documents in a scalable, queryable database that stores the relationships and history among the experiment elements and documents. The interface allows the development of an application ecosystem where applications can focus on calculation rather than data format or organization. This tool can be used by individual labs to exchange and analyze data, and it can serve to curate neuroscience data for searchable archives.


Assuntos
Armazenamento e Recuperação da Informação , Neurociências , Ecossistema , Software , Vocabulário
3.
Sensors (Basel) ; 21(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924672

RESUMO

Motor learning is associated with functional brain plasticity, involving specific functional connectivity changes in the neural networks. However, the degree of learning new motor skills varies among individuals, which is mainly due to the between-subject variability in brain structure and function captured by electroencephalographic (EEG) recordings. Here, we propose a kernel-based functional connectivity measure to deal with inter/intra-subject variability in motor-related tasks. To this end, from spatio-temporal-frequency patterns, we extract the functional connectivity between EEG channels through their Gaussian kernel cross-spectral distribution. Further, we optimize the spectral combination weights within a sparse-based ℓ2-norm feature selection framework matching the motor-related labels that perform the dimensionality reduction of the extracted connectivity features. From the validation results in three databases with motor imagery and motor execution tasks, we conclude that the single-trial Gaussian functional connectivity measure provides very competitive classifier performance values, being less affected by feature extraction parameters, like the sliding time window, and avoiding the use of prior linear spatial filtering. We also provide interpretability for the clustered functional connectivity patterns and hypothesize that the proposed kernel-based metric is promising for evaluating motor skills.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...