Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(9): 6352-6359, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38386651

RESUMO

Ammonia selective catalytic reduction (NH3-SCR) over copper- and iron-exchanged zeolites is a state-of-the-art technology for removal of nitrogen oxides (NOx, NO, and NO2) from exhaust emissions but suffers from poor low-temperature (i.e., 150 °C) activity. Here we show that hydrothermal aging of Fe-beta, Fe-ZSM-5, and Fe-ferrierite at 650 °C or higher leads to a remarkable increase in NOx conversion from ∼30 to ∼80% under fast NH3-SCR conditions at 150 °C. The practical relevance of this finding becomes more evident as an aged Fe-beta/fresh Cu-SSZ-13 composite catalyst exhibits ∼90% conversion. We propose that a neutral heteronuclear bis-µ-oxo ironaluminum dimer might be created within iron zeolites during hydrothermal aging and catalyze ammonium nitrate reduction by NO at 150 °C. Density functional theory calculations reveal that the activation free energy (125 versus 147 kJ mol-1) for the reaction of NO with adsorbed NO3- species, the rate-determining step of ammonium nitrate reduction, is considerably lower on the bis-µ-oxo ironaluminum site than on the well-known mononuclear iron-oxo cation site, thus greatly enhancing the overall SCR activity.

2.
Org Biomol Chem ; 20(32): 6400-6412, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35876298

RESUMO

The study of the reaction rates and mechanism of click chemistry reactions still remains an interesting challenge in organic chemistry. In this regard, the inverse electron demand Diels-Alder (IEDDA) reaction represents a promising metal-free alternative with enhanced reaction rates compared to other reactions of the click chemistry toolbox. Among the different types of dienophiles used in the IEDDA reactions, norbornenes have been widely used given their high stability and fast reaction rates. The inverse electron-demand Diels Alder reaction of 3,6-dipyridin-2-yl-1,2,4,5-tetrazine with a series of norbornene derivatives was studied with quantum mechanical calculations at the M06-2X/6-311+G(d,p) level of theory. The theoretical predictions were confirmed with the experimental data and analyzed with the use of the distortion/interaction model. The obtained results will help in obtaining a better understanding of the factors that affect the relative cycloaddition rates of norbornenes with tetrazines, which are crucial for selectively tuning their efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...