Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 372: 94-102, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29728280

RESUMO

This study explores the enhancement of UV-C tertiary treatment by sulfate radical based Advanced Oxidation Processes (SR-AOPs), including photolytic activation of peroxymonosulfate (PMS) and persulfate (PS) and their photocatalytic activation using Fe(II). Their efficiency was assessed both for the inactivation of microorganisms and the removal or micropollutants (MPs) in real wastewater treatment plant effluents. Under the studied experimental range (UV-C dose 5.7-57 J/L; UV-C contact time 3 to 28 s), the photolysis of PMS and PS (0.01 mM) increased up to 25% the bacterial removal regarding to UV-C system. The photolytic activation of PMS led to the total inactivation of bacteria (≈ 5.70 log) with the highest UV-C dose (57 J/L). However, these conditions were insufficient to remove the MPs, being required oxidant's dosages of 5 mM to remove above 90% of carbamazepine, diclofenac, atenolol and triclosan. The best efficiencies were achieved by the combination of PMS or PS with Fe(II), leading to the total removal of the MPs using a low UV-C dosage (19 J/L), UV-C contact time (9 s) and reagent's dosages (0.5 mM). Finally, high mineralization was reached (>50%) with photocatalytic activation of PMS and PS even with low reagent's dosages.

2.
Sci Total Environ ; 630: 1216-1225, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29554743

RESUMO

The high chemical stability and the low biodegradability of a vast number of micropollutants (MPs) impede their correct treatment in urban wastewater treatment plants. In most cases, the chemical oxidation is the only way to abate them. Advanced Oxidation Processes (AOPs) have been experimentally proved as efficient in the removal of different micropollutants at lab-scale. However, there is not enough information about their application at full-scale. This manuscript reports the application of three different AOPs based on the addition of homogeneous oxidants [hydrogen peroxide, peroxymonosulfate (PMS) and persulfate anions (PS)], in the UV-C tertiary treatment of Estiviel wastewater treatment plant (Toledo, Spain) previously designed and installed in the facility for disinfection. AOPs based on the photolytic decomposition of oxidants have been demonstrated as more efficient than UV-C radiation alone on the removal of 25 different MPs using low dosages (0.05-0.5 mM) and very low UV-C contact time (4-18 s). Photolysis of PMS and H2O2 reached similar average MPs removal in all the range of oxidant dosages, obtaining the highest efficiency with 0.5 mM and 18 s of contact time (48 and 55% respectively). Nevertheless, PMS/UV-C reached slightly higher removal than H2O2/UV-C at low dosages. So, these treatments are selective to degrade the target compounds, obtaining different removal efficiencies for each compound regarding the oxidizing agent, dosages and UV-C contact time. In all the cases, H2O2/UV-C is more efficient than PMS/UV-C, comparing the ratio cost:efficiency (€/m3·order). Even H2O2/UV-C treatments are more efficient than UV-C alone. Thus, the addition of 0.5 mM of H2O2 compensates the increased of UV-C contact time and therefore the increase of electrical consumption, that it should be need to increase the removal of MPs by UV-C treatments alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...