RESUMO
Cell spheroids are an important three-dimensional (3D) model for in vitro testing and are gaining interest for their use in clinical applications. More natural 3D cell culture environments that support cell-cell interactions have been created for cancer drug discovery and therapy applications, such as the scaffold-free 3D Petri Dish® technology. This technology uses reusable and autoclavable silicone micro-molds with different topographies, and it conventionally uses gelled agarose for hydrogel formation to preserve the topography of the selected micro-mold. The present study investigated the feasibility of using a patterned Poly(vinyl alcohol) hydrogel using the circular topography 12-81 (9 × 9 wells) micro-mold to form HeLa cancer cell spheroids and compare them with the formed spheroids using agarose hydrogels. PVA hydrogels showed a slightly softer, springier, and stickier texture than agarose hydrogels. After preparation, Fourier transform infrared (FTIR) spectra showed chemical interactions through hydrogen bonding in the PVA and agarose hydrogels. Both types of hydrogels favor the formation of large HeLa spheroids with an average diameter of around 700-800 µm after 72 h. However, the PVA spheroids are more compact than those from agarose, suggesting a potential influence of micro-mold surface chemistry on cell behavior and spheroid formation. This was additionally confirmed by evaluating the spheroid size, morphology, integrity, as well as E-cadherin and Ki67 expression. The results suggest that PVA promotes stronger cell-to-cell interactions in the spheroids. Even the integrity of PVA spheroids was maintained after exposure to the drug cisplatin. In conclusion, the patterned PVA hydrogels were successfully prepared using the 3D Petri Dish® micro-molds, and they could be used as suitable platforms for studying cell-cell interactions in cancer drug therapy.
RESUMO
Three-dimensional (3D) hydrogels provide tissue-like complexities and allow for the spatial orientation of cells, leading to more realistic cellular responses in pathophysiological environments. There is a growing interest in developing multifunctional hydrogels using ternary mixtures for biomedical applications. This study examined the biocompatibility and suitability of human auricular chondrocytes from microtia cultured onto steam-sterilized 3D Chitosan/Gelatin/Poly(Vinyl Alcohol) (CS/Gel/PVA) hydrogels as scaffolds for tissue engineering applications. Hydrogels were prepared in a polymer ratio (1:1:1) through freezing/thawing and freeze-drying and were sterilized by autoclaving. The macrostructure of the resulting hydrogels was investigated by scanning electron microscopy (SEM), showing a heterogeneous macroporous structure with a pore size between 50 and 500 µm. Fourier-transform infrared (FTIR) spectra showed that the three polymers interacted through hydrogen bonding between the amino and hydroxyl moieties. The profile of amino acids present in the gelatin and the hydrogel was determined by ultra-performance liquid chromatography (UPLC), suggesting that the majority of amino acids interacted during the formation of the hydrogel. The cytocompatibility, viability, cell growth and formation of extracellular matrix (ECM) proteins were evaluated to demonstrate the suitability and functionality of the 3D hydrogels for the culture of auricular chondrocytes. The cytocompatibility of the 3D hydrogels was confirmed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reaching 100% viability after 72 h. Chondrocyte viability showed a high affinity of chondrocytes for the hydrogel after 14 days, using the Live/Dead assay. The chondrocyte attachment onto the 3D hydrogels and the formation of an ECM were observed using SEM. Immunofluorescence confirmed the expression of elastin, aggrecan and type II collagen, three of the main components found in an elastic cartilage extracellular matrix. These results demonstrate the suitability and functionality of a CS/Gel/PVA hydrogel as a 3D support for the auricular chondrocytes culture, suggesting that these hydrogels are a potential biomaterial for cartilage tissue engineering applications, aimed at the regeneration of elastic cartilage.
RESUMO
Cross-linked polymer blends from natural compounds, namely gelatin (Gel), chitosan (CS), and synthetic poly (vinyl alcohol) (PVA), have received increasing scrutiny because of their versatility, biocompatibility, and ease of use for tissue engineering. Previously, Gel/CS/PVA [1:1:1] hydrogel produced via the freeze-drying process presented enhanced mechanical properties. This study aimed to investigate the biocompatibility and chondrogenic potential of a steam-sterilized Gel/CS/PVA hydrogel using differentiation of human adipose-derived mesenchymal stromal cells (AD-hMSC) and cartilage marker expression. AD-hMSC displayed fibroblast-like morphology, 90% viability, and 69% proliferative potential. Mesenchymal profiles CD73 (98.3%), CD90 (98.6%), CD105 (97.0%), CD34 (1.11%), CD45 (0.27%), HLA-DR (0.24%); as well as multilineage potential, were confirmed. Chondrogenic differentiation of AD-hMSC in monolayer revealed the formation of cartilaginous nodules composed of glycosaminoglycans after 21 days. Compared to nonstimulated cells, hMSC-derived chondrocytes shifted the expression of CD49a from 2.82% to 40.6%, CD49e from 51.4% to 92.2%, CD54 from 9.66 to 37.2%, and CD151 from 45.1% to 75.8%. When cultured onto Gel/CS/PVA hydrogel during chondrogenic stimulation, AD-hMSC changed to polygonal morphology, and chondrogenic nodules increased by day 15, six days earlier than monolayer-differentiated cells. SEM analysis showed that hMSC-derived chondrocytes adhered to the surface with extended filopodia and abundant ECM formation. Chondrogenic nodules were positive for aggrecan and type II collagen, two of the most abundant components in cartilage. This study supports the biocompatibility of AD-hMSC onto steam-sterilized GE/CS/PVA hydrogels and its improved potential for chondrocyte differentiation. Hydrogel properties were not altered after steam sterilization, which is relevant for biosafety and biomedical purposes.
RESUMO
Probiotic bacteria are widely used to prepare pharmaceutical products and functional foods because they promote and sustain health. Nonetheless, probiotic viability is prone to decrease under gastrointestinal conditions. In this investigation, Lactiplantibacillus plantarum spp. CM-CNRG TB98 was entrapped in a gelatin−poly (vinyl alcohol) (Gel−PVA) hydrogel which was prepared by a "green" route using microbial transglutaminase (mTGase), which acts as a crosslinking agent. The hydrogel was fully characterized and its ability to entrap and protect L. plantarum from the lyophilization process and under simulated gastric and intestine conditions was explored. The Gel−PVA hydrogel showed a high probiotic loading efficiency (>90%) and survivability from the lyophilization process (91%) of the total bacteria entrapped. Under gastric conditions, no disintegration of the hydrogel was observed, keeping L. plantarum protected with a survival rate of >94%. While in the intestinal fluid the hydrogel is completely dissolved, helping to release probiotics. A Gel−PVA hydrogel is suitable for a probiotic oral administration system due to its physicochemical properties, lack of cytotoxicity, and the protection it offers L. plantarum under gastric conditions.
RESUMO
A healthy Human Gut Microbial Ecosystem (HGME) is a necessary condition for maintaining the orderly function of the whole body. Major alterations in the normal gut microbial composition, activity and functionality (dysbiosis) by an environmental or host-related disruptive event, can compromise metabolic, inflammatory, and neurological processes, causing disorders such as obesity, inflammatory bowel disease, colorectal cancer, and depressive episodes. The restore or the maintaining of the homeostatic balance of Gut Microbiota (GM) populations (eubiosis) is possible through diet, the use of probiotics, prebiotics, antibiotics, and even Fecal Microbiota Transplantation (FMT). Although these "classic methods" represent an effective and accepted way to modulate GM, the complexity of HGME requires new approaches to control it in a more appropriate way. Among the most promising emergent strategies for modulating GM are the use of engineered nanomaterials (metallic nanoparticles (NP), polymeric-NP, quantum dots, micelles, dendrimers, and liposomes); phagotherapy (i.e., phages linked with the CRISPR/Cas9 system), and the use of antimicrobial peptides, non-antibiotic drugs, vaccines, and immunoglobulins. Here we review the current state of development, implications, advantages, disadvantages, and perspectives of the different approaches for manipulating HGME.
Assuntos
Microbioma Gastrointestinal , Probióticos , Disbiose , Ecossistema , Transplante de Microbiota Fecal , Humanos , PrebióticosRESUMO
Gelatin/chitosan/polyvinyl alcohol hydrogels were fabricated at different polymer ratios using the freeze-drying and sterilized by steam sterilization. The thermal stability, chemical structure, morphology, surface area, mechanical properties, and biocompatibility of hydrogels were evaluated by simultaneous thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, confocal microscopy, adsorption/desorption of nitrogen, rheometry, and 3-4,[5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide cell viability assay (MTT assay), respectively. The samples showed a decomposition onset temperature below 253.3 ± 4.8°C, a semicrystalline nature, and a highly porous structure. Hydrogels reached the maximum water uptake in phosphate-buffered saline after 80 min, showing values from nine to twelve times their dry mass. Also, hydrogels exhibiting a solid-like behavior ranging from 2,567 ± 467 to 48,705 ± 2,453 Pa at 0.1 rad/s (low frequency). The sterilized hydrogels showed low cytotoxicity (cell viability > 70%) to the HT29-MTX-E12 cell line. Sterilized hydrogels by steam sterilization can be good candidates as scaffolds for tissue engineering applications.
Assuntos
Fenômenos Químicos , Quitosana/química , Quitosana/toxicidade , Hidrogéis/química , Hidrogéis/toxicidade , Esterilização , Varredura Diferencial de Calorimetria , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Elasticidade , Gelatina/química , Células HT29 , Humanos , Nitrogênio/química , Álcool de Polivinil/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Viscosidade , Água/química , Difração de Raios XRESUMO
Tissue engineering (TE) has become an alternative for auricular reconstruction based on the combination of cells, molecular signals and biomaterials. Scaffolds are biomaterials that provide structural support for cell attachment and subsequent tissue development. Ideally, a scaffold should have characteristics such as biocompatibility and bioactivity to adequate support cell functions. Our purpose was to evaluate biocompatibility of microtic auricular chondrocytes seeded onto a chitosan-polyvinyl alcohol-epichlorohydrin (CS-PVA-ECH) hydrogel to propose this material as a scaffold for tissue engineering application. After being cultured onto CS-PVA-ECH hydrogels, auricular chondrocytes viability was up to 81%. SEM analysis showed cell attachment and extracellular matrix formation that was confirmed by IF detection of type II collagen and elastin, the main constituents of elastic cartilage. Expression of elastic cartilage molecular markers during in vitro expansion and during culture onto hydrogels allowed confirming auricular chondrocyte phenotype. In vivo assay of tissue formation revealed generation of neotissues with similar physical characteristics and protein composition to those found in elastic cartilage. According to our results, biocompatibility of the CS-PVA-ECH hydrogel makes it a suitable scaffold for tissue engineering application aimed to elastic cartilage regeneration.
La ingeniería de tejidos (TE) es una alternativa para la reconstrucción auricular basada en la combinación de células, señales moleculares y biomateriales. Los andamios fabricados con biomateriales brindan un soporte estructural que favorece la adhesión cellular y el desarrollo del tejido. Un andamio debe poseer características como biocompatibilidad y bioactividad para soportar adecuadamente funciones celulares. Nuestro objetivo fue evaluar la biocompatibilidad de condrocitos auriculares de microtia cultivados sobre un hidrogel a base de quitosano-alcohol polivinílico-epiclorhidrina (CS-PVA-ECH) y proponerlo como andamio con aplicaciones en ingeniería de tejidos. La viabilidad de los condrocitos auriculares es superior al 81% después de ser cultivados sobre el hidrogel. El análisis por SEM reveló la unión celular y formación de matriz extracellular sobre el hidrogel; confirmada mediante detección por IF de colágena tipo II y elastina. La expresión de marcadores moleculares durante la expansión in vitro y el cultivo sobre los hidrogeles confirmaron el fenotipo condral. El ensayo de formación de tejido in vivo demostró la generación de neotejidos con características físicas y composición similar al cartílago elástico. Nuestros resultados indican que la biocompatibilidad del hidrogel de CS-PVA-ECH lo hace un andamio adecuado para aplicaciones en ingeniería de tejidos enfocadas a regeneración de cartílago elástico.
Assuntos
Humanos , Condrócitos/citologia , Engenharia Tecidual/métodos , Quitosana/química , Cartilagem da Orelha/citologia , Polivinil/química , Materiais Biocompatíveis , Imuno-Histoquímica , Técnicas de Cultura de Células , Condrócitos/metabolismo , Hidrogéis , Epicloroidrina/químicaRESUMO
This work describes the preparation and characterization of biomimetic chitosan/multiwall carbon nanotubes/nano-hydroxyapatite (CTS/MWCNT/nHAp) scaffolds and their viability for bone tissue engineering applications. The cryogenic process ice segregation-induced self-assembly (ISISA) was used to fabricate 3D biomimetic CTS scaffolds. Proper combination of cryogenics, freeze-drying, nature and molecular ratio of solutes give rise to 3D porous interconnected scaffolds with clusters of nHAp distributed along the scaffold surface. The effect of doping in CNT (e.g. with oxygen and nitrogen atoms) on cell viability was tested. Under the same processing conditions, pore size was in the range of 20-150 µm and irrespective on the type of CNT. Studies on cell viability with scaffolds were carried out using human cells from periosteum biopsy. Prior to cell seeding, the immunophenotype of mesenchymal periosteum or periosteum-derived stem cells (MSCs-PCs) was characterized by flow cytometric analysis using fluorescence-activated and characteristic cell surface markers for MSCs-PCs. The characterized MSCs-PCs maintained their periosteal potential in cell cultures until the 2nd passage from primary cell culture. Thus, the biomimetic CTS/MWCNT/nHAp scaffolds demonstrated good biocompatibility and cell viability in all cases such that it can be considered as promising biomaterials for bone tissue engineering.
Assuntos
Materiais Biomiméticos/farmacologia , Quitosana/farmacologia , Durapatita/farmacologia , Células-Tronco Mesenquimais/citologia , Nanotubos de Carbono/química , Alicerces Teciduais/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Imunofenotipagem , Lactente , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanotubos de Carbono/ultraestrutura , Periósteo/citologia , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral RamanRESUMO
The relationship between electrical conductivity, structure and antibacterial properties of chitosan-silver nanoparticles (CS/AgnP) biocomposites has been analyzed. To test the film's antimicrobial activity, Gram-positive and Gram-negative bacteria were studied. The interactions between silver nanoparticles with chitosan suggest the formation of silver ions which plays a major role in nanocomposite's bactericidal potency. In CS/AgnP biocomposites, the bactericide effectiveness increases by increasing AgnP concentrations up to 3 wt%, which is close to the electrical percolation threshold of ca. 3 wt%. As the AgnP concentration increases above this threshold, the bactericidal potency is greatly diminished. The elucidated correlation between electrical conductivity and antibacterial activity could be useful in the design of other nanocomposites that involve polymeric-based matrices.