Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(6): 143, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801535

RESUMO

KEY MESSAGE: Association analysis, colocation study with previously reported QTL, and differential expression analyses allowed the identification of the consistent QTLs and main candidate genes controlling seed traits. Common beans show wide seed variations in shape, size, water uptake, and coat proportion. This study aimed to identify consistent genomic regions and candidate genes involved in the genetic control of seed traits by combining association and differential expression analyses. In total, 298 lines from the Spanish Diversity Panel were genotyped with 4,658 SNP and phenotyped for seven seed traits in three seasons. Thirty-eight significant SNP-trait associations were detected, which were grouped into 23 QTL genomic regions with 1,605 predicted genes. The positions of the five QTL regions associated with seed weight were consistent with previously reported QTL. HCPC analysis using the SNP that tagged these five QTL regions revealed three main clusters with significantly different seed weights. This analysis also separated groups that corresponded well with the two gene pools described: Andean and Mesoamerican. Expression analysis was performed on the seeds of the cultivar 'Xana' in three seed development stages, and 1,992 differentially expressed genes (DEGs) were detected, mainly when comparing the early and late seed development stages (1,934 DEGs). Overall, 91 DEGs related to cell growth, signaling pathways, and transcriptomic factors underlying these 23 QTL were identified. Twenty-two DEGs were located in the five QTL regions associated with seed weight, suggesting that they are the main set of candidate genes controlling this character. The results confirmed that seed weight is the sum of the effects of a complex network of loci, and contributed to the understanding of seed phenotype control.


Assuntos
Phaseolus , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes , Sementes/genética , Sementes/crescimento & desenvolvimento , Phaseolus/genética , Phaseolus/crescimento & desenvolvimento , Genótipo , RNA-Seq , Estudos de Associação Genética , Genes de Plantas , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla
2.
Theor Appl Genet ; 137(1): 6, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091106

RESUMO

KEY MESSAGE: QTL mapping, association analysis, and colocation study with previously reported QTL revealed three main regions controlling pod morphological traits and two loci for edible pod characteristics on the common bean chromosomes Pv01 and Pv06. Bean pod phenotype is a complex characteristic defined by the combination of different traits that determine the potential use of a genotype as a snap bean. In this study, the TUM RIL population derived from a cross between 'TU' (dry) and 'Musica' (snap) was used to investigate the genetic control of pod phenotype. The character was dissected into pod morphological traits (PMTs) and edible pod characteristics (EPC). The results revealed 35 QTL for PMTs located on seven chromosomes, suggesting a strong QTL colocation on chromosomes Pv01 and Pv06. Some QTL were colocated with previously reported QTL, leading to the mapping of 15 consensus regions associated with bean PMTs. Analysis of EPC of cooked beans revealed that two major loci with epistatic effect, located on chromosomes Pv01 and Pv06, are involved in the genetic control of this trait. An association study using a subset of the Spanish Diversity Panel (snap vs. non-snap) detected 23 genomic regions, with three regions being mapped at a position similar to those of two loci identified in the TUM population. The results demonstrated the relevant roles of Pv01 and Pv06 in the modulation of bean pod phenotype. Gene ontology enrichment analysis revealed a significant overrepresentation of genes regulating the phenylpropanoid metabolic process and auxin response in regions associated with PMTs and EPC, respectively. Both biological functions converged in the lignin biosynthetic pathway, suggesting the key role of the pathway in the genetic control of bean pod phenotype.


Assuntos
Phaseolus , Locos de Características Quantitativas , Phaseolus/genética , Mapeamento Cromossômico , Fenótipo , Genótipo
3.
Plant Genome ; 16(4): e20379, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37726926

RESUMO

The Fabada market class within the dry beans has a well-differentiated seed phenotype with very large white seeds. This work investigated the genetic diversity maintained in the seed collections within this market class and possible genetic erosion over the last 30 years. A panel with 100 accessions was maintained in seed collections for 30 years, 57 accessions collected from farmers in 2021, six cultivars developed in SERIDA, and 16 reference cultivars were gathered and genotyped with 108,585 SNPs using the genotyping-by-sequencing method. Filtering based on genotypic and phenotypic data was carried out in a staggered way to investigate the genetic diversity among populations. The dendrogram generated from genotyping revealed 90 lines forming 16 groups with identical SNP profiles (redundant lines) from 159 lines classified as market-class Fabada according to their passport data. Seed phenotyping indicated that 19 lines were mistakenly classified as Fabada (homonymies), which was confirmed in the dendrogram built without redundant lines. Moreover, this study provides evidence of genetic erosion between the population preserved for 30 years and the currently cultivated population. The conserved population contains 54.6% segregation sites and 41 different SNP profiles, whereas the cultivated population has 19.6% segregation sites and 26 SNP profiles. The loss of genetic variability cannot be attributed to the diffusion of modern cultivars, which increase genetic diversity (six new SNP profiles). The results allow for the more efficient preservation of plant genetic resources in genebanks, minimizing redundant accessions and incorporating new variations based on genotypic and phenotypic data.


Assuntos
Fabaceae , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
BMC Plant Biol ; 23(1): 158, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959530

RESUMO

BACKGROUND: A large variation in seed coat colors and seed phenolic metabolites is present in common bean (Phaseolus vulgaris L.). The study of the relationships between seed coat color phenotype and the phenolic profile is an important step in the elucidation of the gene network involved in the phenylpropanoid biosynthetic pathway. However, this relationship is still poorly understood in this species. RESULTS: A genome-wide association study (GWAS) was used to investigate the genomic regions associated with the synthesis of 10 flavonoids (5 anthocyanins and 5 flavonols) and with 10 seed coat color traits using a set of 308 common bean lines of the Spanish Diversity Panel (SDP) which have been genotyped with 11,763 SNP markers.. A total of 31 significant SNP-trait associations (QTNs) were identified, grouped in 20 chromosome regions: 6 for phenolic metabolites on chromosomes Pv01, Pv02, Pv04, Pv08, and Pv09, 13 for seed coat color on chromosomes Pv01, Pv02, Pv06, Pv07, and Pv10, and 1 including both types of traits located on chromosome Pv08. In all, 58 candidate genes underlying these regions have been proposed, 31 of them previously described in the phenylpropanoid pathway in common bean, and 27 of them newly proposed in this work based on the association study and their homology with Arabidopsis anthocyanin genes. CONCLUSIONS: Chromosome Pv08 was identified as the main chromosome involved in the phenylpropanoid pathway and in consequence in the common bean seed pigmentation, with three independent chromosome regions identified, Phe/C_Pv08(2.7) (expanding from 2.71 to 4.04 Mbp), C_Pv08(5.8) (5.89-6.59 Mbp), and Phe_Pv08(62.5) (62.58 to 63.28 Mbp). Candidate genes previously proposed by other authors for the color genes V and P were validated in this GWAS. Candidate genes have been tentatively proposed from this study for color genes B and Rk on Pv02, Asp on Pv07, and complex C on Pv08. These results help to clarify the complex network of genes involved in the genetic control of phenolic compounds and seed color in common bean and provide the opportunity for future validation studies.


Assuntos
Phaseolus , Fenóis , Antocianinas/genética , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Phaseolus/genética , Sementes/genética
5.
Plants (Basel) ; 11(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35270047

RESUMO

Snap beans are a group of bean cultivars grown for their edible immature pods. The objective of this work was to characterize the diversity of pod phenotypes in a snap bean panel (SBP), comprising 311 lines collected in Europe, and establish a core set (Core-SBP) with the maximum diversity of pod phenotypes. Phenotyping of the SBP was carried out over two seasons based on 14 quantitative pod dimension traits along with three qualitative traits: pod color, seed coat color, and growth habit. Phenotypes were grouped into 54 classes using a hierarchical method, and a Core-SBP with one line per phenotype class was established. A further field-based evaluation of the Core-SBP revealed higher diversity index values than those obtained for the SBP. The Core-SBP was also genotyped using 24 breeder-friendly DNA markers tagging 21 genomic regions previously associated with pod trait control. Significant marker-trait associations were found for 11 of the 21 analyzed regions as well as the locus fin. The established Core-SBP was a first attempt to classify snap bean cultivars based on pod morphology and constituted a valuable source of characteristics for future breeding programs and genetic analysis.

6.
Theor Appl Genet ; 134(11): 3687-3698, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34328529

RESUMO

KEY MESSAGE: Three genes associated with the seed coat color in a TU/Musica RIL population were located on a genetic map, and two candidate genes proposed to control black seed coat in the TU genotype were characterized. Seed coat color is an important characteristic of common bean (Phaseolus vulgaris L.) associated with the marketability of dry bean cultivars, quality and nutritional characteristics of seed, as well as response to pathogens. In this study, the genetic control of seed coat color in a recombinant inbred line population (175 lines) obtained from the cross 'TU' × 'Musica' was investigated. Phenotypic segregation fitted 1:1 for white vs. nonwhite, and 3:1 for brown versus black, indicating the involvement of three independent genes, one controlling white color and two (with epistatic interaction) controlling black color. Using a genetic map built with 842 SNPs, the gene responsible for the white seed coat was mapped on the linkage group Pv07, in the position previously described for the P gene. For the black seed coat phenotype, two genes were mapped to the beginning of chromosomes Pv06 and Pv08, in the positions estimated for the V gene and the complex C locus, respectively, by classical studies. The involvement of these two genomic regions was verified through two crosses between three selected RILs exhibiting complementary and dominant inheritance, in which the TU alleles for both genes resulted in a black phenotype. Two genes involved in the anthocyanin biosynthesis pathway were proposed as candidate genes: Phvul.006G018800 encoding a flavonoid 3'5'hydroxylase and Phvul.008G038400 encoding MYB113 transcription factor. These findings add knowledge to the complex network of genes controlling seed coat color in common bean as well as providing genetic markers to be used in future genetic analysis or plant breeding.


Assuntos
Phaseolus/genética , Pigmentação/genética , Sementes , Alelos , Mapeamento Cromossômico , Cor , Cruzamentos Genéticos , Genes de Plantas , Ligação Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
7.
BMC Plant Biol ; 21(1): 184, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33865309

RESUMO

BACKGROUND: Common bean (Phaseolus vulgaris L.) is an important legume species which can be consumed as immature pods and dry seeds after re-hydration and cooking. Many genes and QTL, and epistatic interactions among them, condition pod morphological traits. However, not all them have been mapped or validated nor candidate genes proposed. We sought to investigate the genomic regions conditioning pod morphological and color characters through GWAS. RESULTS: Single and multi-locus genome wide association analysis was used to investigate pod traits for a set of 301 bean lines of the Spanish Diversity Panel (SDP). The SDP was genotyped with 32,812 SNPs obtained from Genotyping by Sequencing. The panel was grown in two seasons and phenotypic data were recorded for 17 fresh pods traits grouped in four pod characters: pod length, pod cross-section, pod color, and number of seeds per pod. In all, 23 QTL for pod length, 6 for cross-section, 18 for pod color, 6 for number of seeds per pod and 9 associated to two or more pod characters were detected. Most QTL were located in the telomeric region of chromosomes Pv01, Pv02, Pv04, Pv08, Pv09 and Pv10. Eighteen detected QTL co-localized with 28 previously reported QTL. Twenty-one potential candidate genes involving developmental processes were detected underlying 11 QTL for pod morphological characters, four of them homologous to A. thaliana genes FIS2, SPL10, TTG2 and AML4 affecting silique size. Eight potential candidate genes involved in pigment synthesis, were found underlying five QTL for pod color. CONCLUSIONS: GWAS for pod morphological and color characters in the bean Spanish Diversity Panel revealed 62 QTL, 18 co-localized with previously reported QTL, and 16 QTL were underlain by 25 candidate genes. Overall 44 new QTL identified and 18 existing QTL contribute to a better understanding of the complex inheritance of pod size and color traits in common bean and open the opportunity for future validation works.


Assuntos
Estudo de Associação Genômica Ampla , Phaseolus/genética , Fenótipo , Proteínas de Plantas/genética , Sementes/fisiologia , Cor , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Sementes/genética
8.
Genes (Basel) ; 11(12)2020 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322730

RESUMO

White mold (WM) is a devastating fungal disease affecting common bean (Phaseolus vulgaris L.). In this research, a genome-wide association study (GWAS) for WM resistance was conducted using 294 lines of the Spanish diversity panel. One single-locus method and six multi-locus methods were used in the GWAS. Response to this fungus showed a continuous distribution, and 28 lines were identified as potential resistance sources, including lines of Andean and Mesoamerican origin, as well as intermediate lines between the two gene pools. Twenty-two significant associations were identified, which were organized into 15 quantitative trait intervals (QTIs) located on chromosomes Pv01, Pv02, Pv03, Pv04, Pv08, and Pv09. Seven of these QTIs were identified for the first time, whereas eight corresponded to chromosome regions previously identified in the WM resistance. In all, 468 genes were annotated in these regions, 61 of which were proposed potential candidate genes for WM resistance, based on their function related to the three main defense stages on the host: recognition (22), signal transduction (8), and defense response (31). Results obtained from this work will contribute to a better understanding of the complex quantitative resistance to WM in common bean and reveal information of significance for future breeding programs.


Assuntos
Ascomicetos , Cromossomos de Plantas/genética , Resistência à Doença/genética , Phaseolus , Doenças das Plantas , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Phaseolus/genética , Phaseolus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
9.
Fish Shellfish Immunol ; 31(4): 548-56, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21782954

RESUMO

Transferrin (Tf) is a multi-function protein with a central role in iron metabolism, and it is this function that is associated with a role in the innate immune system response. The clear link between Tf and immune defense mechanism lead to propose Tf as a candidate gene for disease resistance. In this study, genomic and cDNA sequences of Tf gene in gilthead seabream (Sparus aurata L.) (SaTf gene), were identified and characterized. SaTf gene structure consists of a coding region of 2076 nucleotides divided into 17 exons and a no-coding region that includes 16 introns and spans 5495 nucleotides. The deduced Tf protein for gilthead seabream is composed of 691 amino acids and consists of an initial peptide and two lobes (N- and C-lobes). This gene structure is similar to that of previously described Tf genes in other fish species. RT-PCR analyses carried out in different tissues and two developmental stages showed tissue-and stage-specific Tf expression in gilthead seabream. Finally, by sequencing the transferrin genomic sequences of 20 unrelated seabreams, 31 SNPs were identified. These data allowed the estimation of the frequency of nucleotide substitution in the SaTf gene as 1SNP per 253 bp. SNPs were detected in different regions of the genomic sequence but they were mainly localized in non-coding regions, specifically, SNP frequency in non-coding regions was fifteen-fold higher than within coding regions.


Assuntos
Perfilação da Expressão Gênica/veterinária , Dourada/genética , Transferrina/genética , Sequência de Aminoácidos , Animais , DNA Complementar/genética , Resistência à Doença , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Dourada/crescimento & desenvolvimento , Dourada/imunologia , Alinhamento de Sequência , Transferrina/imunologia
10.
J Comp Neurol ; 518(10): 1814-24, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20235092

RESUMO

Neurogenin 3 (Ngn3), a proneural gene controlled by the Notch receptor, is implicated in the control of dendrite morphology and synaptic plasticity of cultured hippocampal neurons. Here we report the localization and subcellular distribution of Ngn3 in the hippocampus in vivo and in neuronal cultures. In situ hybridization showed Ngn3 mRNA expression in the pyramidal layer and dentate gyrus of adult mouse hippocampus. Immunohistochemistry studies revealed that Ngn3 localization is mostly cytoplasmic in the hippocampal eminence at embryonic day (E)17 and postnatal day (P)0. At P10 it is cytoplasmic in CA1-CA3 pyramidal neurons and nuclear in granule cells of the dentate gyrus. In the adult hippocampus Ngn3 is localized in the nucleus and cytoplasm of both pyramidal neurons and granule cells. During development of cultured hippocampal neurons, Ngn3 mRNA expression is higher at stages of neuronal polarization, as judged by reverse-transcription polymerase chain reaction (RT-PCR), and it is mostly cytoplasmic. The tracking of the subcellular localization of Ngn3 in neurons infected with a virus expressing myc-Ngn3 suggests that the protein is quickly translocated to the cell nucleus after synthesis and then reexported to the cytoplasm. Treatment with leptomycin B, a potent and specific inhibitor of the exportin CRM1, induced its accumulation into the nucleus, suggesting that CRM1 mediates the nuclear export of Ngn3. These results suggest that Ngn3 may play a role in neuronal development by actions in the cytoplasm.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Antibióticos Antineoplásicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Ácidos Graxos Insaturados/metabolismo , Hipocampo/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição HES-1 , Proteína Exportina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...