Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5703, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459054

RESUMO

This study examined the interplay between bacterial and fungal communities in the human gut microbiota, impacting on nutritional status and body weight. Cohorts of 10 participants of healthy weight, 10 overweight, and 10 obese individuals, underwent comprehensive analysis, including dietary, anthropometric, and biochemical evaluations. Microbial composition was studied via gene sequencing of 16S and ITS rDNA regions, revealing bacterial (bacteriota) and fungal (mycobiota) profiles. Bacterial diversity exceeded fungal diversity. Statistically significant differences in bacterial communities were found within healthy-weight, overweight, and obese groups. The Bacillota/Bacteroidota ratio (previously known as the Firmicutes/Bacteroidetes ratio) correlated positively with body mass index. The predominant fungal phyla were Ascomycota and Basidiomycota, with the genera Nakaseomyces, Kazachstania, Kluyveromyces, and Hanseniaspora, inversely correlating with weight gain; while Saccharomyces, Debaryomyces, and Pichia correlated positively with body mass index. Overweight and obese individuals who harbored a higher abundance of Akkermansia muciniphila, demonstrated a favorable lipid and glucose profiles in contrast to those with lower abundance. The overweight group had elevated Candida, positively linked to simple carbohydrate consumption. The study underscores the role of microbial taxa in body mass index and metabolic health. An imbalanced gut bacteriota/mycobiota may contribute to obesity/metabolic disorders, highlighting the significance of investigating both communities.


Assuntos
Microbioma Gastrointestinal , Micobioma , Saccharomycetales , Humanos , Microbioma Gastrointestinal/genética , Sobrepeso/microbiologia , Estado Nutricional , Bactérias/genética , Obesidade/microbiologia , Bacteroidetes , Firmicutes
2.
Food Res Int ; 175: 113717, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129037

RESUMO

Probiotic-enriched beers have emerged as an innovative solution for delivering beneficial microorganisms, particularly appealing to consumers seeking non-dairy options. However, navigating the complex beer environment presents challenges in effectively cultivating specific probiotic strains. This review aims to promote innovation and distinctiveness within the brewing industry by providing insights into current research on the integration of probiotic microorganisms into beer production, thereby creating a functional beverage. The review explores the effects of probiotic incorporation on the functional, technological, and sensory attributes of beer, distinguishing contributions from bacterial and yeast, as well as potential health benefits. Probiotic microorganisms encounter hurdles during beer production, including ethanol, hops, CO2 levels, pH, oxygen, and nutrients. Ethanol tolerance mechanisms vary among bacteria and yeasts, with specific lactic acid bacteria showing resistance to hop compounds. Hops, crucial for beer categorization, exert a timing-dependent impact on probiotics-early isomerization impedes growth, while late additions yield non-isomerized antibacterial properties. Effective probiotic integration necessitates precise post-fermentation addition stages to ensure viability and flavor. The sensory impact and consumer reception of probiotic-enriched beers require further exploration. Probiotics must endure storage conditions to qualify as functional beer, while limited research investigates health advantages, urging enhanced production techniques, sensory optimization, and clinical validation.


Assuntos
Cerveja , Probióticos , Cerveja/análise , Fermentação , Saccharomyces cerevisiae/metabolismo , Bactérias , Etanol/metabolismo
3.
Front Pediatr ; 11: 1193832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342535

RESUMO

Gut metagenome in pediatric subjects with metabolic syndrome (MetS) and type-2 diabetes mellitus (T2DM) has been poorly studied, despite an alarming worldwide increase in the prevalence and incidence of obesity and MetS within this population. The objective of this study was to characterize the gut microbiome taxonomic composition of Mexican pediatric subjects with MetS and T2DM using shotgun metagenomics and analyze the potential relationship with metabolic changes and proinflammatory effects. Paired-end reads of fecal DNA samples were obtained through the Illumina HiSeq X Platform. Statistical analyses and correlational studies were conducted using gut microbiome data and metadata from all individuals. Gut microbial dysbiosis was observed in MetS and T2DM children compared to healthy subjects, which was characterized by an increase in facultative anaerobes (i.e., enteric and lactic acid bacteria) and a decrease in strict anaerobes (i.e., Erysipelatoclostridium, Shaalia, and Actinomyces genera). This may cause a loss of gut hypoxic environment, increased gut microbial nitrogen metabolism, and higher production of pathogen-associated molecular patterns. These metabolic changes may trigger the activation of proinflammatory activity and impair the host's intermediate metabolism, leading to a possible progression of the characteristic risk factors of MetS and T2DM, such as insulin resistance, dyslipidemia, and an increased abdominal circumference. Furthermore, specific viruses (Jiaodavirus genus and Inoviridae family) showed positive correlations with proinflammatory cytokines involved in these metabolic diseases. This study provides novel evidence for the characterization of MetS and T2DM pediatric subjects in which the whole gut microbial composition has been characterized. Additionally, it describes specific gut microorganisms with functional changes that may influence the onset of relevant health risk factors.

4.
Antibiotics (Basel) ; 11(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36010004

RESUMO

BACKGROUND: There is great interest in the search for new alternatives to antimicrobial drugs, and the use of synbiotics is a promising approach to this problem. This study evaluated the growth inhibition and antibiofilm activity of the short-chain fatty acids produced by Lacticaseibacillus rhamnosus and Pediococcus acidilactici in combination with inulin-type fructans against Candida albicans. METHODS: The growth inhibition of Candida was evaluated using microdilution analysis in 96-well microtiter plates; different concentrations of cell-free supernatants of Lacticaseibacillus rhamnosus and Pediococcus acidilactici were exposed to Candida albicans. The antibiofilm assessment was carried out using the crystal violet staining assay. The short-chain fatty acids were analyzed by gas chromatography. RESULTS: The clinically isolated Candida albicans interacted with supernatants from Lacticaseibacillus rhamnosus and Pediococcus acidilactici and showed significant growth inhibition and antibiofilm formation versus the controls. Lactate and acetic acid were elevated in the supernatants. The results suggest that the supernatants obtained from the synbiotic combinations of Lacticaseibacillus rhamnosus and Pediococcus acidilactici with inulin-type fructans can inhibit the growth and biofilm formation against a clinically isolated Candida albicans strain. CONCLUSIONS: These results suggest that synbiotic formulations could be a promising alternative to antifungal drugs in candidiasis therapy.

5.
Plant Foods Hum Nutr ; 77(2): 212-219, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35461373

RESUMO

There is great interest in the search for new alternatives to antimicrobial drugs, and the use of prebiotics and probiotics is a promising approach to this problem. This study aimed to assess the effect of inulin-type fructans, used in synbiotic combinations with Lactobacillus paracasei or Lactobacillus plantarum, on the production of short-chain fatty acids and antimicrobial activity against Candida albicans. The inhibition assay using the L. paracasei and L. plantarum supernatants resulting from the metabolization of inulin-type fructans displayed growth inhibition and antibiofilm formation against C. albicans. Inhibition occurred at concentrations of 12.5, 25, and 50% of the L. paracasei supernatant and at a concentration of 50% of the L. plantarum supernatant. The analysis of short-chain fatty acids by gas chromatography showed that lactic acid was the dominating produced metabolite. However, acetic, propionic, and butyric acids were also detected in supernatants from both probiotics. Therefore, the synbiotic formulation of L. paracasei or L. plantarum in the presence of inulin-type fructans constitutes with anticandidal effect is a possible option to produce antifungal drugs or antimicrobial compounds.


Assuntos
Probióticos , Simbióticos , Antibacterianos/farmacologia , Biofilmes , Candida albicans/metabolismo , Ácidos Graxos Voláteis/metabolismo , Frutanos/farmacologia , Inulina/farmacologia , Lactobacillus , Prebióticos , Probióticos/farmacologia
6.
J Hum Nutr Diet ; 34(4): 645-655, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33586805

RESUMO

BACKGROUND: The fungal community of the gastrointestinal tract has recently become of interest, and knowledge of its relationship with the development of obesity is scarce. The present study aimed to evaluate the cultivable fungal fraction from the microbiota and to analyze its relationship with obesity. METHODS: Samples were taken from 99 participants with normal weight, overweight and obesity (n = 31, 34 and 34, respectively) and were cultivated in selective medium, and the cultivable yeasts were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anthropometric and biochemical measures were also evaluated. RESULTS: Eutrophic, overweight and obese groups presented concentrations of 1.6, 2.16 and 2.19 log10  colony-forming units g-1 yeast, respectively. Ascomycota and Basidiomycota were the two identified phyla. At the genus level, Candida spp. showed a relatively high prevalence, and 10 different species were detected: Candida glabrata, Candida orthopsilosis, Candida lambica, Candida kefyr, Candida albicans, Candida krusei, Candida valida, Candida parapsilosis, Candida utilis and Candida humilis (with relative abundances of 71.72%, 5.05%, 21.21%, 6.06%, 29.29%, 27.27%, 8.08%, 16.16%, 1.01% and 2.02%, respectively). CONCLUSIONS: The obese group presented a higher prevalence of Candida albicans. Furthermore, Candida albicans, Candida kefyr and Rhodotorula mucilaginosa showed a high positive correlation with obesity, weight gain and fat mass and showed a negative correlation with high-density lipoprotein and lean mass, parameters related to weight loss.


Assuntos
Fungos/classificação , Fungos/isolamento & purificação , Trato Gastrointestinal/microbiologia , Micobioma , Obesidade/microbiologia , Sobrepeso/microbiologia , Adulto , Candida/classificação , Candida/isolamento & purificação , Contagem de Colônia Microbiana , Análise Discriminante , Feminino , Humanos , Masculino , Rhodotorula/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Leveduras/classificação , Leveduras/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...