Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1395953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946902

RESUMO

Cotrimoxazole, the combined formulation of sulfamethoxazole and trimethoprim, is one of the treatments of choice for several infectious diseases, particularly urinary tract infections. Both components of cotrimoxazole are synthetic antimicrobial drugs, and their combination was introduced into medical therapeutics about half a century ago. In Gram-negative bacteria, resistance to cotrimoxazole is widespread, being based on the acquisition of genes from the auxiliary genome that confer resistance to each of its antibacterial components. Starting from previous knowledge on the genotype of resistance to sulfamethoxazole in a collection of cotrimoxazole resistant uropathogenic Escherichia coli strains, this work focused on the identification of the genetic bases of the trimethoprim resistance of these same strains. Molecular techniques employed included PCR and Sanger sequencing of specific amplicons, conjugation experiments and NGS sequencing of the transferred plasmids. Mobile genetic elements conferring the trimethoprim resistance phenotype were identified and included integrons, transposons and single gene cassettes. Therefore, strains exhibited several ways to jointly resist both antibiotics, implying different levels of genetic linkage between genes conferring resistance to sulfamethoxazole (sul) and trimethoprim (dfrA). Two structures were particularly interesting because they represented a highly cohesive arrangements ensuring cotrimoxazole resistance. They both carried a single gene cassette, dfrA14 or dfrA1, integrated in two different points of a conserved cluster sul2-strA-strB, carried on transferable plasmids. The results suggest that the pressure exerted by cotrimoxazole on bacteria of our environment is still promoting the evolution toward increasingly compact gene arrangements, carried by mobile genetic elements that move them in the genome and also transfer them horizontally among bacteria.

2.
Braz J Microbiol ; 54(4): 2903-2913, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783937

RESUMO

Resistance to antibiotics and heavy metals in Antarctic bacteria has been investigated due to anthropogenic impact on the continent. However, there is still much to learn about the genetic determinants of resistance in native bacteria. In this study, we investigated antibiotic, heavy metal, and metalloid resistance in Pseudomonas sp. AU10, isolated from King George Island (Antarctica), and analyzed its genome to look for all the associated genetic determinants (resistome). We found that AU10 displayed resistance to Cr(VI), Cu(II), Mn(II), Fe(II), and As(V), and produced an exopolysaccharide with high Cr(VI)-biosorption capacity. Additionaly, the strain showed resistance to aminopenicillins, cefotaxime, aztreonam, azithromycin, and intermediate resistance to chloramphenicol. Regarding the resistome, we did not find resistance genes in AU10's natural plasmid or in a prophage context. Only a copper resistance cluster indicated possible horizontal acquisition. The mechanisms of resistance found were mostly efflux systems, several sequestering proteins, and a few enzymes, such as an AmpC ß-lactamase or a chromate reductase, which would account for the observed phenotypic profile. In contrast, the presence of a few gene clusters, including the terZABCDE operon for tellurite resistance, did not correlate with the expected phenotype. Despite the observed resistance to multiple antibiotics and heavy metals, the lack of resistance genes within evident mobile genetic elements is suggestive of the preserved nature of AU10's Antarctic habitat. As Pseudomonas species are good bioindicators of human impact in Antarctic environments, we consider that our results could help refine surveillance studies based on monitoring resistances and associated resistomes in these populations.


Assuntos
Metais Pesados , Pseudomonas , Humanos , Pseudomonas/genética , Antibacterianos/farmacologia , Regiões Antárticas , Metais Pesados/farmacologia , Bactérias , Fenótipo
3.
Extremophiles ; 23(5): 625-633, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31250110

RESUMO

Psychrophilic and psychrotolerant bacteria from permanently cold environments may be the most abundant extremophiles on Earth and yet little is known on how they cope with temperature stress. Real-time reverse transcription PCR (RT-qPCR) is a powerful technique that could shed light on this matter but it requires pre-validated reference genes for normalization of data to get accurate results. In this study, we assessed the expression stability of eight candidate genes for the psychrotolerant Antarctic isolate Pseudomonas sp. AU10 during exponential growth under 4 °C and 30 °C, and after a cold-shock. Using the software programs BestKeeper and geNorm we validated recA, ftsZ, 16S rRNA, and rpoD as reference genes and we suggested the combination of recA and ftsZ for qPCR data normalization. Our results provide a starting point for gene expression studies in Antarctic Pseudomonas concerning temperature-related physiology and also for the validation of reference genes in other cold-adapted bacterial species.


Assuntos
Temperatura Baixa , Perfilação da Expressão Gênica/normas , Pseudomonas/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Estresse Fisiológico , Pseudomonas/metabolismo , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...