Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 57(58): 7112-7115, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34179902

RESUMO

Herein we report experimental evidence for the shortest intermolecular distance reported for two electronically-different hydrogen atoms in the solid state. The Hδ+Hδ- non-covalent interaction was studied using theoretical calculations indicating that electrostatic and dispersion forces are of paramount importance.

2.
Chemistry ; 24(19): 4895-4901, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29325209

RESUMO

Fe3 N and Fe3 C nanocomposites have a wide range of applications thanks to their ceramic nature, magnetic properties, conductivity and catalytic activity, just to cite some. In many fields optimal performances are ensured by crystallinity, homogeneity and hierarchical organization. In the present paper, crystalline, magnetic and well-defined nanofibres of iron nitride and iron carbide/carbon nanocomposite with tunable composition and size were prepared via electrospinning. The starting polymeric material was directly electrospun into fibres and then calcined, leading to a highly homogeneous final product of nanoparticles along the fibres (both outside and inside). A mechanistic study was undertaken and here discussed. The magnetic properties of the as-prepared nanofibres were also studied. The as-prepared final fibre mat composite material can serve as active catalyst, for example, in oxygen reduction reaction (where nanofibres outperformed mere nanoparticles), it can serve as functional support for classical catalytic processes or, thanks to its magnetic properties, can be applied in magnetic-field assisted separation or as magneto-active membranes.

3.
J Mater Chem B ; 3(42): 8279-8292, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262883

RESUMO

The high porosity and versatile composition of the benchmarked mesoporous metal (Fe, Al, Cr) trimesate metal-organic frameworks (MIL-100(Fe, Al, Cr)) make them very promising solids in different strategic industrial and societal domains (separation, catalysis, biomedicine, etc.). In particular, MIL-100(Fe) nanoparticles (NPs) have been recently revealed to be one of the most promising and innovative next generation tools enabling multidrug delivery to overcome cancer resistance. Here, we analyzed the in vitro toxicity of the potential drug nanocarrier MIL-100(Fe) NPs and the effect of the constitutive cation by comparing its cytotoxicity with that one of its Cr and Al analogue NPs. Lung (A549 and Calu-3) and hepatic (HepG2 and Hep3B) cell lines were selected considering pulmonary, ingestion or intravenous exposure modes. First, the complete physicochemical characterization (structural, chemical and colloidal stability) of the MIL-100(Fe, Al, Cr) NPs was performed in the cell culture media. Then, their cytotoxicity was evaluated in the four selected cell lines using a combination of methods from cell impedance, cell survival/death and ROS generation to DNA damage for measuring genotoxicity. Thus, MIL-100(Fe, Al, Cr) NPs did not induce in vitro cell toxicity, even at high doses in the p53 wild type cell lines (A549 and calu-3 (lung) and HepG2 (liver)). The only toxic effect of MIL100-Fe was observed in the hepatocarcinoma cell line Hep3B, which is stress sensitive because it does not express TP53, the guardian of the genome.

4.
Chem Commun (Camb) ; 50(52): 6872-4, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24836322

RESUMO

A series of nanometric isoreticular and/or functionalized analogues of the mesoporous environmentally-friendly iron(III) polycarboxylates MIL-100/101 have been successfully synthesized. Their exceptional pore size, of up to 68 Å, together with their relatively good stability in solvents, makes them promising candidates for heterogeneous catalysis or inclusion of large molecules, among others.

5.
Chem Commun (Camb) ; 49(37): 3848-50, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23549257

RESUMO

Benchmarked micro or nanosized HKUST-1, ZIF-8 and Fe3(BTC)2 as well as template-assisted Fe3(BTC)2 metal-organic frameworks (MOFs) of various morphologies were synthesized via a green and scalable aerosol route. Their high space time yields make this continuous method very promising for the industrial production and shaping of MOFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...