Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36829792

RESUMO

Insulin-like growth factor 1 (IGF-1) is a trophic factor for the nervous system where it exerts pleiotropic effects, including the regulation of metabolic homeostasis. IGF-1 deficiency induces morphological alterations in the cochlea, apoptosis and hearing loss. While multiple studies have addressed the role of IGF-1 in hearing protection, its potential function in the modulation of otic metabolism remains unclear. Here, we report that "House Ear Institute-organ of Corti 1" (HEI-OC1) auditory cells express IGF-system genes that are regulated during their differentiation. Upon binding to its high-affinity receptor IGF1R, IGF-1 activates AKT and mTOR signaling to stimulate anabolism and, concomitantly, to reduce autophagic catabolism in HEI-OC1 progenitor cells. Notably, IGF-1 stimulation during HEI-OC1 differentiation to mature otic cells sustained both constructive metabolism and autophagic flux, possibly to favor cell remodeling. IGF1R engagement and downstream AKT signaling promoted HEI-OC1 cell survival by maintaining redox balance, even when cells were challenged with the ototoxic agent cisplatin. Our findings establish that IGF-1 not only serves an important function in otic metabolic homeostasis but also activates antioxidant defense mechanisms to promote hair cell survival during the stress response to insults.

2.
Genes (Basel) ; 12(10)2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34680948

RESUMO

Insulin-like growth factor 1 (IGF-1) is a peptide hormone belonging to the insulin family of proteins. Almost all of the biological effects of IGF-1 are mediated through binding to its high-affinity tyrosine kinase receptor (IGF1R), a transmembrane receptor belonging to the insulin receptor family. Factors, receptors and IGF-binding proteins form the IGF system, which has multiple roles in mammalian development, adult tissue homeostasis, and aging. Consequently, mutations in genes of the IGF system, including downstream intracellular targets, underlie multiple common pathologies and are associated with multiple rare human diseases. Here we review the contribution of the IGF system to our understanding of the molecular and genetic basis of human hearing loss by describing, (i) the expression patterns of the IGF system in the mammalian inner ear; (ii) downstream signaling of IGF-1 in the hearing organ; (iii) mouse mutations in the IGF system, including upstream regulators and downstream targets of IGF-1 that inform cochlear pathophysiology; and (iv) human mutations in these genes causing hearing loss.


Assuntos
Perda Auditiva/genética , Audição , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Humanos , Fator de Crescimento Insulin-Like I/genética , Mutação , Transdução de Sinais
3.
Antioxidants (Basel) ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572983

RESUMO

Stress-activated protein kinases (SAPK) are associated with sensorineural hearing loss (SNHL) of multiple etiologies. Their activity is tightly regulated by dual-specificity phosphatase 1 (DUSP1), whose loss of function leads to sustained SAPK activation. Dusp1 gene knockout in mice accelerates SNHL progression and triggers inflammation, redox imbalance and hair cell (HC) death. To better understand the link between inflammation and redox imbalance, we analyzed the cochlear transcriptome in Dusp1-/- mice. RNA sequencing analysis (GSE176114) indicated that Dusp1-/- cochleae can be defined by a distinct profile of key cellular expression programs, including genes of the inflammatory response and glutathione (GSH) metabolism. To dissociate the two components, we treated Dusp1-/- mice with N-acetylcysteine, and hearing was followed-up longitudinally by auditory brainstem response recordings. A combination of immunofluorescence, Western blotting, enzymatic activity, GSH levels measurements and RT-qPCR techniques were used. N-acetylcysteine treatment delayed the onset of SNHL and mitigated cochlear damage, with fewer TUNEL+ HC and lower numbers of spiral ganglion neurons with p-H2AX foci. N-acetylcysteine not only improved the redox balance in Dusp1-/- mice but also inhibited cytokine production and reduced macrophage recruitment. Our data point to a critical role for DUSP1 in controlling the cross-talk between oxidative stress and inflammation.

4.
TH Open ; 3(3): e230-e243, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31360828

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia characterized by recurrent and spontaneous epistaxis (nose bleeds), telangiectases on skin and mucosa, internal organ arteriovenous malformations, and dominant autosomal inheritance. Mutations in Endoglin and ACVRL1 / ALK1 , genes mainly expressed in endothelium, are responsible in 90% of the cases for the pathology. These genes are involved in the transforming growth factor-ß(TGF-ß) signaling pathway. Epistaxis remains as one of the most common symptoms impairing the quality of life of patients, becoming life-threatening in some cases. Different strategies have been used to decrease nose bleeds, among them is antiangiogenesis. The two main angiogenic pathways in endothelial cells depend on vascular endothelial growth factor and fibroblast growth factor (FGF). The present work has used etamsylate, the diethylamine salt of the 2,5-dihydroxybenzene sulfonate anion, also known as dobesilate, as a FGF signaling inhibitor. In endothelial cells, in vitro experiments show that etamsylate acts as an antiangiogenic factor, inhibiting wound healing and matrigel tubulogenesis. Moreover, etamsylate decreases phosphorylation of Akt and ERK1/2. A pilot clinical trial (EudraCT: 2016-003982-24) was performed with 12 HHT patients using a topical spray of etamsylate twice a day for 4 weeks. The epistaxis severity score (HHT-ESS) and other pertinent parameters were registered in the clinical trial. The significant reduction in the ESS scale, together with the lack of significant side effects, allowed the designation of topical etamsylate as a new orphan drug for epistaxis in HHT (EMA/OD/135/18).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...