Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecohealth ; 20(1): 74-83, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37140741

RESUMO

Chytridiomycosis is affecting amphibians worldwide, causing the decline and extinction of several amphibian populations. The disease is caused by the fungus Batrachochytrium dendrobatidis (Bd), a multihost pathogen living in freshwater habitats. While several environmental factors have been associated with the prevalence of Bd and its virulence, the effects of water quality on the pathogen are not clear yet. Some evidence suggests that water pollution may reduce amphibians' immune response and increase prevalence of Bd. To explore this hypothesis, we analyzed the relationship between water quality and the presence of Bd by using spatial data mining of 150 geolocations of Bd in amphibians from 9 families where Bd positive specimens have been previously reported, and water quality in 4,202 lentic and lotic water bodies in Mexico from 2010 to 2021. Our model showed that in the 3 main families where Bd was recorded, its presence is high in locations with low water quality, i.e., water polluted likely contaminated with urban and industrial waste. Using this model, we inferred areas suitable for Bd in Mexico; mainly in poorly studied areas along the gulf and on the pacific slope. We further argue that actions to reduce water pollution should become an integral part of public policies to prevent the spread of Bd and protect amphibians from this deadly pathogen.


Assuntos
Quitridiomicetos , Micoses , Humanos , Animais , México/epidemiologia , Ecossistema , Batrachochytrium , Micoses/epidemiologia , Micoses/veterinária , Micoses/microbiologia , Anfíbios/microbiologia , Poluição da Água/efeitos adversos
2.
Int J Parasitol Parasites Wildl ; 11: 163-173, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32099787

RESUMO

Amphibian populations are globally declining at an alarming rate, and infectious diseases are among the main causes of their decline. Two micro-parasites, the fungus Batrachochytrium dendrobatidis (Bd) and the virus Ranavirus (RV) have caused mass mortality of amphibians and population declines. Other, less understood epizootics are caused by macro-parasites, such as Trombiculoidea chiggers. Infection with chiggers can affect frog behavior and survival. Furthermore, synergistic effects of co-infection with both macro and micro-parasites may lead to higher morbidity. To better understand these potential synergies, we investigated the presence and co-infection by chiggers, Bd and RV in the endemic frog Tlalocohyla smithii (T. smithii). Co-infection of Bd, RV, and/or chiggers is expected in habitats that are suitable for their co-occurrence; and if infection with one parasite facilitates infection with the others. On the other hand, co-infection could decrease if these parasites were to differ in their micro-environmental requirements (i.e. niche apportionment). A total of 116 frogs of T. smithii were studied during 2014 and 2016 in three streams within the Chamela-Cuixmala Biosphere Reserve in Jalisco, Mexico. Our results show that 31% of the frogs were infected with Trombiculoidea chiggers (Hannemania sp. and Eutrombicula alfreddugesi); Hannemania prevalence increased with air temperature and decreased in sites with high canopies and with water pH values above 8.5 and below 6.7. Bd prevalence was 2.6%, RV prevalence was 0%, and none of the frogs infected with chiggers were co-infected with Bd. Together, this study suggests that chiggers do not facilitate infection with Bd, as these are apportioned in different micro-habitats. Nevertheless, the statistical power to assure this is low. We recommend further epidemiological monitoring of multiple parasites in different geographical locations in order to provide insight on the true hazards, risks and conservation options for amphibian populations.

3.
J Evol Biol ; 26(4): 878-88, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23489329

RESUMO

Natural selection is considered a major force shaping brain size evolution in vertebrates, whereas the influence of sexual selection remains controversial. On one hand, sexual selection could promote brain enlargement by enhancing cognitive skills needed to compete for mates. On the other hand, sexual selection could favour brain size reduction due to trade-offs between investing in brain tissue and in sexually selected traits. These opposed predictions are mirrored in contradictory relationships between sexual selection proxies and brain size relative to body size. Here, we report a phylogenetic comparative analysis that highlights potential flaws in interpreting relative brain size-mating system associations as effects of sexual selection on brain size in shorebirds (Charadriiformes), a taxonomic group with an outstanding diversity in breeding systems. Considering many ecological effects, relative brain size was not significantly correlated with testis size. In polyandrous species, however, relative brain sizes of males and females were smaller than in monogamous species, and females had smaller brain size than males. Although these findings are consistent with sexual selection reducing brain size, they could also be due to females deserting parental care, which is a common feature of polyandrous species. Furthermore, our analyses suggested that body size evolved faster than brain size, and thus the evolution of body size may be confounding the effect of the mating system on relative brain size. The brain size-mating system association in shorebirds is thus not only due to sexual selection on brain size but rather, to body size evolution and other multiple simultaneous effects.


Assuntos
Encéfalo/anatomia & histologia , Charadriiformes/anatomia & histologia , Seleção Genética , Animais , Evolução Biológica , Peso Corporal , Charadriiformes/classificação , Charadriiformes/genética , Feminino , Masculino , Modelos Biológicos , Tamanho do Órgão , Fenótipo , Filogenia , Fatores Sexuais , Comportamento Sexual Animal , Testículo/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...