Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biomedicines ; 12(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38255169

RESUMO

SARS-CoV-2 caused the devastating COVID-19 pandemic, which, to date, has resulted in more than 800 million confirmed cases and 7 million deaths worldwide. The rapid development and distribution (at least in high-income countries) of various vaccines prevented these overwhelming numbers of infections and deaths from being much higher. But would it have been possible to develop a prophylaxis against this pandemic more quickly? Since SARS-CoV-2 belongs to the subgenus sarbecovirus, with its highly homologous SARS-CoV-1, we propose here that while SARS-CoV-2-specific vaccines are being developed, phase II clinical trials of specific SARS-CoV-1 vaccines, which have been in the pipeline since the early 20th century, could have been conducted to test a highly probable cross-protection between SARS-CoV-1 and SARS-CoV-2.

3.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36564128

RESUMO

BACKGROUND: The dismal clinical outcome of relapsed/refractory (R/R) T cell acute lymphoblastic leukemia (T-ALL) highlights the need for innovative targeted therapies. Although chimeric antigen receptor (CAR)-engineered T cells have revolutionized the treatment of B cell malignancies, their clinical implementation in T-ALL is in its infancy. CD1a represents a safe target for cortical T-ALL (coT-ALL) patients, and fratricide-resistant CD1a-directed CAR T cells have been preclinically validated as an immunotherapeutic strategy for R/R coT-ALL. Nonetheless, T-ALL relapses are commonly very aggressive and hyperleukocytic, posing a challenge to recover sufficient non-leukemic effector T cells from leukapheresis in R/R T-ALL patients. METHODS: We carried out a comprehensive study using robust in vitro and in vivo assays comparing the efficacy of engineered T cells either expressing a second-generation CD1a-CAR or secreting CD1a x CD3 T cell-engaging Antibodies (CD1a-STAb). RESULTS: We show that CD1a-T cell engagers bind to cell surface expressed CD1a and CD3 and induce specific T cell activation. Recruitment of bystander T cells endows CD1a-STAbs with an enhanced in vitro cytotoxicity than CD1a-CAR T cells at lower effector:target ratios. CD1a-STAb T cells are as effective as CD1a-CAR T cells in cutting-edge in vivo T-ALL patient-derived xenograft models. CONCLUSIONS: Our data suggest that CD1a-STAb T cells could be an alternative to CD1a-CAR T cells in coT-ALL patients with aggressive and hyperleukocytic relapses with limited numbers of non-leukemic effector T cells.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Linfócitos T , Humanos , Imunoterapia Adotiva , Anticorpos , Recidiva
4.
Bone Marrow Transplant ; 55(10): 1935-1945, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32086495

RESUMO

Graft-versus-host disease (GVHD) is the main complication after allogeneic hematopoietic stem cell transplantation. We previously unveiled a correlation between proportions of C-C motif chemokine receptor 7 (CCR7)+ T cells in the apheresis and the risk of developing GVHD. We wanted to evaluate in vivo whether apheresis with low proportion of CCR7+ cells or treatment with an anti-human CCR7 monoclonal antibody (mAb) were suitable strategies to prevent or treat acute GVHD in preclinical xenogeneic models. Therapeutic anti-CCR7 mAb was the most effective strategy in both prophylactic and therapeutic settings where antibody drastically reduced in vivo lymphoid organ infiltration of donor CCR7+ T cells, extended lifespan and solved clinical signs. The antibody neutralized in vitro migration of naïve and central memory T cells toward CCR7 ligands and depleted target CCR7+ subsets through complement activation. Both mechanisms of action spared CCR7- subsets, including effector memory and effector memory CD45RA+ T cells which may mediate graft versus leukemia effect and immunity against infections. Accordingly, the numbers of donor CCR7+ T cells in the apheresis were not associated to cytomegalovirus reactivation or the recurrence of the underlying disease. These findings provide a promising new strategy to prevent and treat acute GVHD, a condition where new specific, safety and effective treatment is needed.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Receptores CCR7 , Doença Enxerto-Hospedeiro/tratamento farmacológico , Efeito Enxerto vs Leucemia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Receptores CCR7/efeitos dos fármacos , Linfócitos T
5.
J Clin Invest ; 128(7): 2802-2818, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29781813

RESUMO

NOTCH1 is a prevalent signaling pathway in T cell acute lymphoblastic leukemia (T-ALL), but crucial NOTCH1 downstream signals and target genes contributing to T-ALL pathogenesis cannot be retrospectively analyzed in patients and thus remain ill defined. This information is clinically relevant, as initiating lesions that lead to cell transformation and leukemia-initiating cell (LIC) activity are promising therapeutic targets against the major hurdle of T-ALL relapse. Here, we describe the generation in vivo of a human T cell leukemia that recapitulates T-ALL in patients, which arises de novo in immunodeficient mice reconstituted with human hematopoietic progenitors ectopically expressing active NOTCH1. This T-ALL model allowed us to identify CD44 as a direct NOTCH1 transcriptional target and to recognize CD44 overexpression as an early hallmark of preleukemic cells that engraft the BM and finally develop a clonal transplantable T-ALL that infiltrates lymphoid organs and brain. Notably, CD44 is shown to support crucial BM niche interactions necessary for LIC activity of human T-ALL xenografts and disease progression, highlighting the importance of the NOTCH1/CD44 axis in T-ALL pathogenesis. The observed therapeutic benefit of anti-CD44 antibody administration in xenotransplanted mice holds great promise for therapeutic purposes against T-ALL relapse.


Assuntos
Receptores de Hialuronatos/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiologia , Receptor Notch1/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Transplante de Células-Tronco Hematopoéticas , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mutação , Transplante de Neoplasias , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/genética , Transdução de Sinais
6.
Mol Cell Proteomics ; 17(8): 1564-1577, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29769354

RESUMO

Virtually all patients of the rare inflammatory eye disease birdshot chorioretinopathy (BSCR) carry the HLA-A*29:02 allele. BSCR is also associated with endoplasmic reticulum aminopeptidase 2 (ERAP2), an enzyme involved in processing HLA class I ligands, thus implicating the A*29:02 peptidome in this disease. To investigate the relationship between both risk factors we employed label-free quantitative mass spectrometry to characterize the effects of ERAP2 on the A*29:02-bound peptidome. An ERAP2-negative cell line was transduced with lentiviral constructs containing GFP-ERAP2 or GFP alone, and the A*29:02 peptidomes from both transduced cells were compared. A similar analysis was performed with two additional A*29:02-positive, ERAP1-concordant, cell lines expressing or not ERAP2. In both comparisons the presence of ERAP2 affected the following features of the A*29:02 peptidome: 1) Length, with increased amounts of peptides >9-mers, and 2) N-terminal residues, with less ERAP2-susceptible and more hydrophobic ones. The paradoxical effects on peptide length suggest that unproductive binding to ERAP2 might protect some peptides from ERAP1 over-trimming. The influence on N-terminal residues can be explained by a direct effect of ERAP2 on trimming, without ruling out and improved processing in concert with ERAP1. The alterations in the A*29:02 peptidome suggest that the association of ERAP2 with BSCR is through its effects on peptide processing. These differ from those on the ankylosing spondylitis-associated HLA-B*27. Thus, ERAP2 alters the peptidome of distinct HLA molecules as a function of their specific binding preferences, influencing different pathological outcomes in an allele-dependent way.


Assuntos
Alelos , Aminopeptidases/genética , Coriorretinite/genética , Predisposição Genética para Doença , Antígenos HLA-A/genética , Peptídeos/metabolismo , Proteoma/genética , Aminopeptidases/química , Aminopeptidases/metabolismo , Coriorretinopatia de Birdshot , Linhagem Celular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes
7.
J Exp Med ; 214(11): 3361-3379, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28947612

RESUMO

A key unsolved question regarding the developmental origin of conventional and plasmacytoid dendritic cells (cDCs and pDCs, respectively) resident in the steady-state thymus is whether early thymic progenitors (ETPs) could escape T cell fate constraints imposed normally by a Notch-inductive microenvironment and undergo DC development. By modeling DC generation in bulk and clonal cultures, we show here that Jagged1 (JAG1)-mediated Notch signaling allows human ETPs to undertake a myeloid transcriptional program, resulting in GATA2-dependent generation of CD34+ CD123+ progenitors with restricted pDC, cDC, and monocyte potential, whereas Delta-like1 signaling down-regulates GATA2 and impairs myeloid development. Progressive commitment to the DC lineage also occurs intrathymically, as myeloid-primed CD123+ monocyte/DC and common DC progenitors, equivalent to those previously identified in the bone marrow, are resident in the normal human thymus. The identification of a discrete JAG1+ thymic medullary niche enriched for DC-lineage cells expressing Notch receptors further validates the human thymus as a DC-poietic organ, which provides selective microenvironments permissive for DC development.


Assuntos
Células Dendríticas/metabolismo , Proteína Jagged-1/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Nicho de Células-Tronco , Timo/metabolismo , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Proteína Jagged-1/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Monócitos/citologia , Monócitos/metabolismo , Células Mieloides/citologia , Células Mieloides/metabolismo , Receptores Notch/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Timo/citologia
8.
Nucleic Acids Res ; 43(2): 760-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25539926

RESUMO

Thymocyte differentiation is a complex process involving well-defined sequential developmental stages that ultimately result in the generation of mature T-cells. In this study, we analyzed DNA methylation and gene expression profiles at successive human thymus developmental stages. Gain and loss of methylation occurred during thymocyte differentiation, but DNA demethylation was much more frequent than de novo methylation and more strongly correlated with gene expression. These changes took place in CpG-poor regions and were closely associated with T-cell differentiation and TCR function. Up to 88 genes that encode transcriptional regulators, some of whose functions in T-cell development are as yet unknown, were differentially methylated during differentiation. Interestingly, no reversion of accumulated DNA methylation changes was observed as differentiation progressed, except in a very small subset of key genes (RAG1, RAG2, CD8A, PTCRA, etc.), indicating that methylation changes are mostly unique and irreversible events. Our study explores the contribution of DNA methylation to T-cell lymphopoiesis and provides a fine-scale map of differentially methylated regions associated with gene expression changes. These can lay the molecular foundations for a better interpretation of the regulatory networks driving human thymopoiesis.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica , Receptores de Antígenos de Linfócitos T alfa-beta/análise , Linfócitos T/imunologia , Transcrição Gênica , Diferenciação Celular/genética , Expressão Gênica , Humanos , Linfócitos T/citologia , Linfócitos T/metabolismo , Timócitos/citologia , Timo/citologia , Timo/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Curr Top Microbiol Immunol ; 360: 47-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22695916

RESUMO

Notch receptors are master regulators of many aspects of development and tissue renewal in metazoans. Notch1 activation is essential for T-cell specification of bone marrow-derived multipotent progenitors that seed the thymus, and for proliferation and further progression of early thymocytes along the T-cell lineage. Deregulated activation of Notch1 significantly contributes to the generation of T-cell acute lymphoblastic leukaemia (T-ALL). In addition to Notch1 signals, survival and proliferation signals provided by the IL-7 receptor (IL-7R) are also required during thymopoiesis. Our understanding of the molecular mechanisms controlling stage-specific survival and proliferation signals provided by Notch1 and IL-7R has recently been improved by the discovery that the IL-7R is a transcriptional target of Notch1. Thus, Notch1 controls T-cell development, in part by regulating the stage- and lineage-specific expression of IL-7R. The finding that induction of IL-7R expression downstream of Notch1 also occurs in T-ALL highlights the important contribution that deregulated IL-7R expression and function may have in this pathology. Confirming this notion, oncogenic IL7R gain-of-function mutations have recently been identified in childhood T-ALL. Here we discuss the fundamental role of Notch1 and IL-7R signalling pathways in physiological and pathological T-cell development in mice and men, highlighting their close molecular underpinnings.


Assuntos
Células-Tronco Multipotentes/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/metabolismo , Receptores de Interleucina-7/metabolismo , Linfócitos T/metabolismo , Animais , Medula Óssea/metabolismo , Diferenciação Celular , Linhagem da Célula , Regulação da Expressão Gênica , Humanos , Camundongos , Células-Tronco Multipotentes/citologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Notch1/genética , Receptores de Interleucina-7/genética , Transdução de Sinais , Linfócitos T/citologia
10.
J Exp Med ; 206(4): 779-91, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19349467

RESUMO

Notch1 activation is essential for T-lineage specification of lymphomyeloid progenitors seeding the thymus. Progression along the T cell lineage further requires cooperative signaling provided by the interleukin 7 receptor (IL-7R), but the molecular mechanisms responsible for the dynamic and lineage-specific regulation of IL-7R during thymopoiesis are unknown. We show that active Notch1 binds to a conserved CSL-binding site in the human IL7R gene promoter and critically regulates IL7R transcription and IL-7R alpha chain (IL-7Ralpha) expression via the CSL-MAML complex. Defective Notch1 signaling selectively impaired IL-7Ralpha expression in T-lineage cells, but not B-lineage cells, and resulted in a compromised expansion of early human developing thymocytes, which was rescued upon ectopic IL-7Ralpha expression. The pathological implications of these findings are demonstrated by the regulation of IL-7Ralpha expression downstream of Notch1 in T cell leukemias. Thus, Notch1 controls early T cell development, in part by regulating the stage- and lineage-specific expression of IL-7Ralpha.


Assuntos
Regulação da Expressão Gênica , Leucemia/imunologia , Receptores de Interleucina-7/genética , Linfócitos T/imunologia , Timo/imunologia , Animais , Antígenos CD/imunologia , Sangue Fetal/imunologia , Feto/imunologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Recém-Nascido , Leucemia/genética , Camundongos , Técnicas de Cultura de Órgãos , Receptor Notch1/imunologia , Timo/crescimento & desenvolvimento
11.
J Immunol ; 177(6): 3711-20, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16951331

RESUMO

Notch signaling is critical for T cell development of multipotent hemopoietic progenitors. Yet, how Notch regulates T cell fate specification during early thymopoiesis remains unclear. In this study, we have identified an early subset of CD34high c-kit+ flt3+ IL-7Ralpha+ cells in the human postnatal thymus, which includes primitive progenitors with combined lymphomyeloid potential. To assess the impact of Notch signaling in early T cell development, we expressed constitutively active Notch1 in such thymic lymphomyeloid precursors (TLMPs), or triggered their endogenous Notch pathway in the OP9-Delta-like1 stroma coculture. Our results show that proliferation vs differentiation is a critical decision influenced by Notch at the TLMP stage. We found that Notch signaling plays a prominent role in inhibiting non-T cell differentiation (i.e., macrophages, dendritic cells, and NK cells) of TLMPs, while sustaining the proliferation of undifferentiated thymocytes with T cell potential in response to unique IL-7 signals. However, Notch activation is not sufficient for inducing T-lineage progression of proliferating progenitors. Rather, stroma-derived signals are concurrently required. Moreover, while ectopic IL-7R expression cannot replace Notch for the maintenance and expansion of undifferentiated thymocytes, Notch signals sustain IL-7R expression in proliferating thymocytes and induce IL-7R up-regulation in a T cell line. Thus, IL-7R and Notch pathways cooperate to synchronize cell proliferation and suppression of non-T lineage choices in primitive intrathymic progenitors, which will be allowed to progress along the T cell pathway only upon interaction with an inductive stromal microenvironment. These data provide insight into a mechanism of Notch-regulated amplification of the intrathymic pool of early human T cell progenitors.


Assuntos
Proliferação de Células , Inibidores do Crescimento/fisiologia , Células Progenitoras Mieloides/citologia , Receptor Notch1/fisiologia , Receptores de Interleucina-7/fisiologia , Linfócitos T/citologia , Linfócitos T/imunologia , Timo/citologia , Animais , Linhagem Celular , Células Cultivadas , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Camundongos , Células Progenitoras Mieloides/imunologia , Células Progenitoras Mieloides/metabolismo , Técnicas de Cultura de Órgãos , Proteínas Proto-Oncogênicas c-kit/biossíntese , Receptor Notch1/metabolismo , Receptores de Interleucina-7/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo , Timo/imunologia , Timo/metabolismo , Tirosina Quinase 3 Semelhante a fms/biossíntese
12.
Blood ; 106(1): 274-86, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15774621

RESUMO

Using a combination of molecular cytogenetic and large-scale expression analysis in human T-cell acute lymphoblastic leukemias (T-ALLs), we identified and characterized a new recurrent chromosomal translocation, targeting the major homeobox gene cluster HOXA and the TCRB locus. Real-time quantitative polymerase chain reaction (RQ-PCR) analysis showed that the expression of the whole HOXA gene cluster was dramatically dysregulated in the HOXA-rearranged cases, and also in MLL and CALM-AF10-related T-ALL cases, strongly suggesting that HOXA genes are oncogenic in these leukemias. Inclusion of HOXA-translocated cases in a general molecular portrait of 92 T-ALLs based on large-scale expression analysis shows that this rearrangement defines a new homogeneous subgroup, which shares common biologic networks with the TLX1- and TLX3-related cases. Because T-ALLs derive from T-cell progenitors, expression profiles of the distinct T-ALL subgroups were analyzed with respect to those of normal human thymic subpopulations. Inappropriate use or perturbation of specific molecular networks involved in thymic differentiation was detected. Moreover, we found a significant association between T-ALL oncogenic subgroups and ectopic expression of a limited set of genes, including several developmental genes, namely HOXA, TLX1, TLX3, NKX3-1, SIX6, and TFAP2C. These data strongly support the view that the abnormal expression of developmental genes, including the prototypical homeobox genes HOXA, is critical in T-ALL oncogenesis.


Assuntos
Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/genética , Leucemia-Linfoma de Células T do Adulto/genética , Translocação Genética , Adolescente , Adulto , Idoso , Diferenciação Celular/genética , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Família Multigênica , Linfócitos T/citologia , Linfócitos T/fisiologia
13.
Blood ; 102(7): 2444-51, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12829602

RESUMO

Notch1 activity is essential for the specification of T-lineage fate in hematopoietic progenitors. Once the T-cell lineage is specified, T-cell precursors in the thymus must choose between alphabeta and gammadelta lineages. However, the impact of Notch1 signaling on intrathymic pro-T cells has not been addressed directly. To approach this issue, we used retroviral vectors to express constitutively active Notch1 in human thymocyte progenitors positioned at successive developmental stages, and we followed their differentiation in fetal thymus organ culture (FTOC). Here we show that sustained Notch1 signaling impairs progression to the double-positive (DP) stage and efficiently diverts the earliest thymic progenitors from the main alphabeta T-cell pathway toward development of gammadelta T cells. The impact of Notch1 signaling on skewed gammadelta production decreases progressively along intrathymic maturation and is restricted to precursor stages upstream of the pre-T-cell receptor checkpoint. Close to and beyond that point, Notch1 is not further able to instruct gammadelta cell fate, but promotes an abnormal expansion of alphabeta-committed thymocytes. These results stress the stage-specific impact of Notch1 signaling in intrathymic differentiation and suggest that regulation of Notch1 activity at defined developmental windows is essential to control alphabeta versus gammadelta T-cell development and to avoid deregulated expansion of alphabeta-lineage cells.


Assuntos
Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia , Receptores de Superfície Celular , Células-Tronco/citologia , Células-Tronco/imunologia , Timo/citologia , Timo/embriologia , Fatores de Transcrição , Animais , Antígenos CD34/análise , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Pré-Escolar , Feto , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Humanos , Lactente , Proteínas de Membrana/genética , Camundongos , Técnicas de Cultura de Órgãos , Receptor Notch1 , Receptores de Antígenos de Linfócitos T alfa-beta/análise , Receptores de Antígenos de Linfócitos T alfa-beta/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta/análise , Transdução de Sinais/imunologia , Células-Tronco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...