Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 166828, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37690766

RESUMO

This study investigates the role of floating plastics as integrative samplers of organic contaminants. To this end, plastics items were collected in two Western Mediterranean coastal areas: the Mar Menor lagoon, and the last transect of Ebro river. Floating plastics were identified and characterized by attenuated total reflection Fourier-transform infrared spectrometry. Then, organic contaminants were extracted from plastic items by ultrasonic extraction with methanol, and the concentrations of 168 regulated and emerging contaminants were analysed. These compounds were analysed by stir bar sorptive extraction coupled to gas chromatography-mass spectrometry (GC-MS), except for bisphenol analogues, which were analysed with a ultraperformance liquid chromatography pump coupled to a triple quadrupole mass spectrometer (UHPLC-MS/MS), and pharmaceutical compounds, determined by UPLC coupled to hybrid triple quadrupole-linear ion trap mass spectrometer (UPLC-MS/MS). All the contaminants groups considered were detected in the samples, being particularly relevant the contribution of plastic additives. The most frequently detected contaminants were UV-filters, PAHs, pharmaceuticals and synthetic musks. Apart from plasticizers, the individual contaminants octocrylene, homosalate, galaxolide, salycilic acid and ketoprofen were frequently detected in plastics items. The results pointed out to urban and touristic activities as the main sources of pollution in the coastal areas investigated. The utility of floating plastics as integrative samplers for the detection of organic contaminants in aquatic ecosystems has been demonstrated.


Assuntos
Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Cromatografia Líquida , Ecossistema , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Químicos da Água/análise , Plásticos/análise
2.
J Hazard Mater ; 458: 131904, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356174

RESUMO

Pharmaceuticals and microplastics constitute potential hazards in aquatic systems, but their combined effects and underlying toxicity mechanisms remain largely unknown. In this study, a simultaneous characterization of bioaccumulation, associated metabolomic alterations and potential recovery mechanisms was performed. Specifically, a bioassay on Mediterranean mussels (Mytilus galloprovincialis) was carried out with polyethylene microplastics (PE-MPLs, 1 mg/L) and citalopram or bezafibrate (500 ng/L). Single and co-exposure scenarios lasted 21 days, followed by a 7-day depuration period to assess their potential recovery. PE-MPLs delayed the bioaccumulation of citalopram (lower mean at 10 d: 447 compared to 770 ng/g dw under single exposure), although reaching similar tissue concentrations after 21 d. A more limited accumulation of bezafibrate was observed overall, regardless of PE-MPLs co-exposure (

Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Microplásticos/metabolismo , Polietileno/metabolismo , Bezafibrato/metabolismo , Bezafibrato/farmacologia , Plásticos/metabolismo , Citalopram/metabolismo , Citalopram/farmacologia , Bioacumulação , Preparações Farmacêuticas/metabolismo , Poluentes Químicos da Água/análise
3.
Environ Res ; 228: 115887, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054836

RESUMO

Coastal ecosystems are particularly vulnerable to terrestrial inputs from human-impacted areas. The prevalence of wastewater treatment plants, unable to remove contaminants such as pharmaceuticals (PhACs), leads to their continuous input into the marine environment. In this paper, the seasonal occurrence of PhACs in a semi-confined coastal lagoon (the Mar Menor, south-eastern Spain) was studied during 2018 and 2019 by evaluating their presence in seawater and sediments, and their bioaccumulation in aquatic organisms. Temporal variation in the contamination levels was evaluated by comparison to a previous study carried out between 2010 and 2011 before the cessation of permanent discharges of treated wastewater into the lagoon. The impact of a flash flood event (September 2019) on PhACs pollution was also assessed. A total of seven compounds (out of 69 PhACs analysed) were found in seawater during 2018-2019, with a limited detection frequency (<33%) and concentrations (up to 11 ng/L of clarithromycin). Only carbamazepine was found in sediments (ND-1.2 ng/g dw), suggesting an improved environmental quality in comparison to 2010-2011 (when 24 and 13 compounds were detected in seawater and sediments, respectively). However, the biomonitoring of fish and molluscs showed a still remarkable accumulation of analgesic/anti-inflammatory drugs, lipid regulators, psychiatric drugs and ß-blocking agents, albeit not higher than in 2010. The flash flood event from 2019 increased the prevalence of PhACs in the lagoon, compared to the 2018-2019 sampling campaigns, especially in the upper water layer. After the flash flood the antibiotics clarithromycin and sulfapyridine yielded the highest concentrations ever reported in the lagoon (297 and 145 ng/L, respectively), alongside azithromycin in 2011 (155 ng/L). Flash flood events associated with sewer overflows and soil mobilisation, which are expected to increase under climate change scenarios, should be considered when assessing the risks posed by pharmaceuticals to vulnerable aquatic ecosystems in the coastal areas.


Assuntos
Ecossistema , Poluentes Químicos da Água , Humanos , Animais , Monitoramento Ambiental , Inundações , Bioacumulação , Claritromicina , Poluentes Químicos da Água/análise , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...