Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 104, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997118

RESUMO

The wheel re-profiling is an important part of railway wheelset maintenance. Researchers and railway operators have been very concerned about how to minimize the loss of time during wheel re-profiling without decreasing safety. Avoiding wheelset disassembly means considerable time savings, while reducing wheel damage during operation. Underfloor wheel lathes are the most appropriate tool to achieve this double objective, and therefore the most used nowadays. Multi-cut tool lathes have the disadvantage of being extremely expensive. On the other hand, with single tool lathes, re-profiling is not smooth or safe enough when current convex profile support rollers are used. It is well known by the companies that during reprofiling the wheel suffers impacts/damaged. In this article, a methodology to optimize the profile of the support rollers used in underfloor single tool lathes for railway wheel re-profiling is proposed. This novel profile design will minimize damage and increase the safety of such lathes, since it proposes a greater smoothness in the process. Simulations of re-profiling process have been carried out by the finite element method showing that the designed roller profile reduces drastically the impact/damage during the operation. The impact generated between the re-profiling wheel and the rollers is avoided. Profile-optimized support rollers have been used in a real underfloor wheel lathe, showing good results.

2.
Sensors (Basel) ; 20(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599845

RESUMO

Railway axles are critical to the safety of railway vehicles. However, railway axle maintenance is currently based on scheduled preventive maintenance using Nondestructive Testing. The use of condition monitoring techniques would provide information about the status of the axle between periodical inspections, and it would be very valuable in the prevention of catastrophic failures. Nevertheless, in the literature, there are not many studies focusing on this area and there is a lack of experimental data. In this work, a reliable real-time condition-monitoring technique for railway axles is proposed. The technique was validated using vibration measurements obtained at the axle boxes of a full bogie installed on a rig, where four different cracked railway axles were tested. The technique is based on vibration analysis by means of the Wavelet Packet Transform (WPT) energy, combined with a Support Vector Machine (SVM) diagnosis model. In all cases, it was observed that the WPT energy of the vibration signals at the first natural frequency of the axle when the wheelset is first installed (the healthy condition) increases when a crack is artificially created. An SVM diagnosis model based on the WPT energy at this frequency demonstrates good reliability, with a false alarm rate of lower than 10% and defect detection for damage occurring in more than 6.5% of the section in more than 90% of the cases. The minimum number of wheelsets required to build a general model to avoid mounting effects, among others things, is also discussed.

3.
Sensors (Basel) ; 18(6)2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867055

RESUMO

Input shaping is an Optimal Control feedforward strategy whose ability to define how and when a flexible dynamical system defined by Ordinary Differential Equations (ODEs) and computer controlled would move into its operative space, without command induced unwanted dynamics, has been exhaustively demonstrated. This work examines the issue of Embedded Internet of Things (IoT) Input Shaping with regard to real time control of multibody oscillatory systems whose dynamics are better described by differential algebraic equations (DAEs). An overhead crane hanging a double link multibody payload has been appointed as a benchmark case; it is a multibody, multimode system. This might be worst scenario to implement Input Shaping. The reasons can be found in the wide array of constraints that arise. Firstly, the reliability of the multibody model was tested on a Functional Mock-Up Interface (FMI) with the two link payload suspended from the trolley by comparing the experimental video tapping signals in time domain faced with the signals extracted from the multibody model. The FFTs of the simulated and the experimental signal contain the same frequency harmonics only with somewhat different power due to the real world light damping in the joints. The application of this approach may be extended to other cases i.e., the usefulness of mobile hydraulic cranes is limited because the payload is supported by an overhead cable under tension that allows oscillation to occur during crane motion. If the payload size is not negligible small when compared with the cable length may introduce an additional oscillatory mode that creates a multibody double pendulum. To give the insight into the double pendulum dynamics by Lagrangian methods two slender rods as payloads are analyzed dealing with the overhead crane and a composite revolute-revolute joint is proposed to model the cable of the hydraulic crane, both assumptions facilitates an affordable analysis. This allows developing a general study of this type of multibody payloads dynamics including its normal modes, modes ratios plus ranges of frequencies expected. Input Shapers were calculated for those multimodes of vibration by convolving Specified Insensitivity (SI) shapers for each mode plus a novel Direct SI-SI shaper well suited to reduce the computational requirements, i.e., the number of the shaper taps, to carry out the convolution sum in real time by the IoT device based on a single microcontroller working as the command generator. Several comparisons are presented for the shaped and unshaped responses using both the multibody model, the experimental FMI set-up and finally a real world hydraulic crane under slewing motion commanded by an analog Joystick connected by two RF modules 802.15.4 to the IoT device that carry out the convolution sum in real time. Input Shaping improves the performances for all the cases.

4.
Sensors (Basel) ; 18(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772820

RESUMO

Crack detection for railway axles is key to avoiding catastrophic accidents. Currently, non-destructive testing is used for that purpose. The present work applies vibration signal analysis to diagnose cracks in real railway axles installed on a real Y21 bogie working on a rig. Vibration signals were obtained from two wheelsets with cracks at the middle section of the axle with depths from 5.7 to 15 mm, at several conditions of load and speed. Vibration signals were processed by means of wavelet packet transform energy. Energies obtained were used to train an artificial neural network, with reliable diagnosis results. The success rate of 5.7 mm defects was 96.27%, and the reliability in detecting larger defects reached almost 100%, with a false alarm ratio lower than 5.5%.

5.
Sensors (Basel) ; 18(3)2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509690

RESUMO

An efficient maintenance is a key consideration in systems of railway transport, especially in high-speed trains, in order to avoid accidents with catastrophic consequences. In this sense, having a method that allows for the early detection of defects in critical elements, such as the bogie mechanical components, is a crucial for increasing the availability of rolling stock and reducing maintenance costs. The main contribution of this work is the proposal of a methodology that, based on classical signal processing techniques, provides a set of parameters for the fast identification of the operating state of a critical mechanical system. With this methodology, the vibratory behaviour of a very complex mechanical system is characterised, through variable inputs, which will allow for the detection of possible changes in the mechanical elements. This methodology is applied to a real high-speed train in commercial service, with the aim of studying the vibratory behaviour of the train (specifically, the bogie) before and after a maintenance operation. The results obtained with this methodology demonstrated the usefulness of the new procedure and allowed for the disclosure of reductions between 15% and 45% in the spectral power of selected Intrinsic Mode Functions (IMFs) after the maintenance operation.

6.
J Biol Phys ; 36(4): 355-63, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21886343

RESUMO

A pure mechanical anisotropic model of a tree trunk has been developed based on the 3D finite element method. It simulates the microscopic structure of vessels in the trunk of a European beech (Fagus sylvatica) in order to study and analyse its mechanical behaviour with different configurations of pressures in the conduits of xylem and phloem. The dependence of the strains at the inner bark was studied when sap pressure changed. The comparison with previously published experimental data leads to the conclusion that a great tensile stress-or 'negative pressure'-must exist in the water column in order to achieve the measured strains if only the mechanical point of view is taken into account. Moreover, the model can help to design experiments where qualitatively knowing the strains and the purely mechanical behaviour of the tree is required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...