Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 793: 148524, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34182452

RESUMO

Nanotechnology is one of the most relevant scientific areas today due to its multiple applications in fields such as medicine, environmental remediation, information technology and energy conversion. This importance has led to the need to advance in the development of environmentally sustainable and safe nanomaterials by incorporating the principles of green chemistry during their synthesis and in their applications. However, this qualitative framework of thought does not offer minimum criteria for the use of the term "green", and therefore, this adjective is commonly used to refer to bio-based or nanotechnological processes without taking into account their net ecological impact. In this context, environmental sustainability metrics can be applied to nanotechnology to compare, optimize and quantify the environmental sustainability of synthesis procedures. This review provides an overview of green chemistry and its application in nanotechnology, but also an analysis of the use of green chemistry principles in the development of bio-based nanobiotechnology and nanosynthesis, with special emphasis on the use of sustainability's metrics for the quantitative analysis of nanomaterial synthesis protocols. These include: Atom Economy, E-factor, Process Mass Intensity, Energy Intensity, and Life Cycle Analysis.


Assuntos
Recuperação e Remediação Ambiental , Nanoestruturas , Benchmarking , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...