Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anaerobe ; 83: 102782, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717850

RESUMO

OBJECTIVES: This study evaluated the effect of particle size and dosage of granular activated carbon (GAC) on methane production from the anaerobic digestion of raw effluent (RE) of swine wastewater, and the solid (SF) and liquid (LF) fractions. The effect of temperature using the selected size and dosage of GAC was also evaluated. METHODS: 60 mL of swine wastewater were inoculated with anaerobic granular sludge and GAC at different dosages and particle size. The cultures were incubated at different temperatures at 130 rpm. The kinetic parameters from experimental data were obtained using the Gompertz model. RESULTS: The cultures with the LF and GAC (75-150 µm, 15 g/L) increased 1.87-fold the methane production compared to the control without GAC. The GAC at 75-150 µm showed lower lag phases and higher Rmax than the cultures with GAC at 590-600 µm. The cumulative methane production at 45 °C with the RE + GAC was 7.4-fold higher than the control. Moreover, methane production at 45 °C significantly increased with the cultures LF + GAC (6.0-fold) and SF + GAC (2.0-fold). The highest production of volatile fatty acids and ammonium was obtained at 45 °C regardless of the substrate and the addition of GAC contributed to a higher extent than the cultures lacking GAC. In most cases, the kinetic parameters at 30 °C and 37 °C were also higher with GAC. CONCLUSIONS: GAC contributed to improving the fermentative and methanogenesis stages during the anaerobic digestion of fractions, evidenced by an improvement in the kinetic parameters.


Assuntos
Carvão Vegetal , Águas Residuárias , Animais , Suínos , Anaerobiose , Temperatura , Reatores Biológicos , Metano
2.
J Environ Manage ; 275: 111231, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829265

RESUMO

Biocatalytic degradation of recalcitrant pollutants employing ligninolytic enzymes is a promising approach for wastewater treatment. However, enzymes production must be improved to make biodegradation a more cost-effective treatment. In this research, laccase production from Trametes versicolor using lignocellulosic residues (agave bagasse, coconut fibers and wheat bran) as cosubstrates was improved using a central composite face-centered design, and the application of the enzymes-rich culture supernatant was evaluated for blue wastewater biodegradation. Findings revealed that the optimal conditions for laccase production were found at 35 °C and 5 g/L of wheat bran as cosubstrate, reaching about 200 U/mL in 11 days in a batch submerged fermentation. These conditions were scaled up for a submerged fermentation using an airlift reactor, and a maximum enzymatic activity of 1200 U/mL was achieved in 9 days at 30 °C. This enzymes-rich culture supernatant was tested for the degradation of blue wastewater from aircraft in an airlift reactor. Results showed a COD removal efficiency of 43% and an increase of the biodegradability index from 0.64 to 1.36, both results applying an enzymatic activity of supernatant of 300 U/mL. In conclusion, the enzymatic biodegradation becomes a viable strategy for the pretreatment of a real effluent such as the blue wastewater collected in public transportation.


Assuntos
Lacase , Trametes , Biodegradação Ambiental , Lignina , Águas Residuárias
3.
Bioresour Technol ; 317: 123981, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32799081

RESUMO

In this work, lawsone (LQ) and anthraquinone 2-sulphonate (AQS) (dissolved and covalently immobilized on activated carbon) were evaluated as redox mediators during the dark fermentation of glucose by a pretreated anaerobic sludge. Findings revealed that the use of dissolved LQ increased H2 production (10%), and dissolved AQS improved H2 production rate (11.4%). Furthermore, the total production of liquid byproducts (acetate, butyrate, ethanol, and butanol) was enhanced using dissolved (17%) and immobilized (36%) redox mediators. The established redox standard potentials of LQ and AQS suggested a possible interaction through electron transfer in cytochromes complexes for hydrogen production and the Bcd/EtfAB complex for volatile fatty acid formation.


Assuntos
Hidrogênio , Esgotos , Ácidos Graxos Voláteis , Fermentação , Hidrogênio/análise , Oxirredução
4.
Environ Pollut ; 252(Pt B): 1163-1169, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31252114

RESUMO

In this work, anthraquinone-2-sulfonate (AQS) was covalently immobilized onto activated carbon cloth (ACC), to be used as redox mediator for the reductive decolorization of reactive red 2 (RR2) by an anaerobic consortium. The immobilization of AQS improved the capacity of ACC to transfer electrons, evidenced by an increment of 3.29-fold in the extent of RR2 decolorization in absence of inhibitors, compared to incubations lacking AQS. Experiments conducted in the presence of vancomycin, an inhibitor of acidogenic bacteria, and with 2-bromoethane sulfonic acid (BES), an inhibitor of methanogenic archaea, revealed that acidogenic bacteria are the main responsible for RR2 biotransformation mediated by immobilized AQS. Nonetheless, the results also suggest that some methanogens are able to maintain their capacity to use immobilized AQS as an electron acceptor to sustain the decolorization process, even in the presence of BES.


Assuntos
Compostos Azo/metabolismo , Biotransformação , Carvão Vegetal/química , Antraquinonas , Compostos Azo/química , Bactérias/metabolismo , Carvão Vegetal/metabolismo , Cor , Corantes/metabolismo , Naftalenossulfonatos , Oxirredução , Triazinas
5.
Waste Manag Res ; 36(2): 121-130, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29189111

RESUMO

In this study, a simultaneous optimisation of technical and environmental parameters for activated carbon production from soybean shells is presented. A 23 factorial design was developed to explore the performance of the technical responses yield and iodine number, and the single score of ReCiPe endpoint method, which was evaluated by means the life cycle assessment. The independent factors included in the design of experiments were the impregnation ratio, temperature, and time activation. Three quadratic equations were obtained and simultaneously optimised by maximisation of the overall desirability function. The principal results of the individual responses indicate that the iodine number is practically independent of the activation temperature in a range of 450 ºC-650 ºC; the yield is inversely proportional to activation time and exhibits minimum values between 500 ºC-600 ºC; and the environmental response single score presents the lowest value at a temperature and time activation of 450 ºC and 30 min, respectively. The most polluting stage of activated carbon production from soybean shells production is the impregnation stage, mainly for the use of ZnCl2 as activating agent and the energy consumption. The simultaneous optimisation of the three responses indicates that the optimal activated carbon should be produced at 180 min, 650 ºC, and an impregnation ratio of 1 g soybean shell g ZnCl2-1.


Assuntos
Agroquímicos , Carvão Vegetal , Resíduos Industriais , Gerenciamento de Resíduos , Adsorção , Carbono , Temperatura
6.
Environ Technol ; 37(15): 1914-22, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26789835

RESUMO

In this study, amberlite XAD-16 (XAD-16) bed column system was used to remove ferulic acid (FA) from aqueous solutions. Laboratory-scale column experiments were conducted in downflow fixed bed at initial FA concentration of 1 g/L, initial pH 3, and 25°C. The performance of the adsorbent bed under different flow rates (1.3-7.7 mL/min) was studied. The bed utilization efficiency was in the range of 64.64-72.21% at the studied flow rates. A mass transfer model considering both axial dispersion and intraparticle diffusion was developed to predict the breakthrough curves of FA adsorption on XAD-16. This model predicted the experimental data better than Bohart-Adams model and Thomas model, based on the low deviation between predicted and experimental data. The axial dispersion coefficient value varied from 6.45 × 10(-6) to 1.10 × 10(-6) m(2)/s at flow rate from 1.3 to 7.7 mL/min, whereas the intraparticle diffusion coefficient was 1.04 × 10(-10) m(2)/s, being this last resistance the rate-limiting step. In conclusion, axial dispersion and intraparticle diffusion phenomena play the major role in predicting the adsorption of FA onto XAD-16 in fixed-bed columns.


Assuntos
Ácidos Cumáricos/química , Ácidos Cumáricos/isolamento & purificação , Modelos Teóricos , Adsorção , Fracionamento Químico , Difusão , Polímeros
7.
Environ Technol ; 35(9-12): 1077-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24701903

RESUMO

The presence of dyes in effluent is a matter of concern due to their toxicologic and aesthetical effects. In this research, locally available agro-industrial wastes (Zea mays pericarp, ZMP; Agave tequilana bagasse, ATB; and Medicago sativa waste, MSW) were used as alternative low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The adsorbents were characterized physically and chemically by Fourier transform infrared, scanning electron microscopy, potentiometric titrations, and N2 physisorption. MB adsorption experiments were carried out in batch systems and experimental data were used to calculate the adsorption isotherm model parameters (Langmuir, Freundlich, and Temkin) and the adsorption kinetic model parameters (pseudo-first- and pseudo-second-order models). MB-loaded biosorbents were desorbed with deionized water, ethanol (10% and 50% v/v), hydrochloric acid (0.01 and 0.05 N), and sodium hydroxide (0.1 N) at room temperature, and the best eluent was used in various adsorption-desorption cycles. The selected agricultural wastes can be considered as promising adsorbents for dye uptake from water since they exhibit considerable MB adsorption capacity (MSW 202.6 mg g(-1), ATB 156.2mg g(-1), and ZMP 110.9mg g(-1)), but it is lower than that reported for activated carbon; however, the biosorbents show higher adsorption rate than powdered activated carbon. Furthermore, the adsorbents can be economically regenerated with HCl solutions and reused for seven adsorption-desorption cycles.


Assuntos
Agave/química , Medicago sativa/química , Azul de Metileno/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Zea mays/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...