Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(3)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35336148

RESUMO

The discovery of penicillin entailed a decisive breakthrough in medicine. No other medical advance has ever had the same impact in the clinical practise. The fungus Penicillium chrysogenum (reclassified as P. rubens) has been used for industrial production of penicillin ever since the forties of the past century; industrial biotechnology developed hand in hand with it, and currently P. chrysogenum is a thoroughly studied model for secondary metabolite production and regulation. In addition to its role as penicillin producer, recent synthetic biology advances have put P. chrysogenum on the path to become a cell factory for the production of metabolites with biotechnological interest. In this review, we tell the history of P. chrysogenum, from the discovery of penicillin and the first isolation of strains with high production capacity to the most recent research advances with the fungus. We will describe how classical strain improvement programs achieved the goal of increasing production and how the development of different molecular tools allowed further improvements. The discovery of the penicillin gene cluster, the origin of the penicillin genes, the regulation of penicillin production, and a compilation of other P. chrysogenum secondary metabolites will also be covered and updated in this work.

2.
Fungal Genet Biol ; 48(6): 641-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21146624

RESUMO

Heterotrimeric Gα protein Pga1 of Penicillium chrysogenum controls vegetative growth, conidiation and secondary metabolite production. In this work we studied the role of Pga1 in spore germination and resistance to different stress conditions. Strains G203R-T (expressing the dominant inactivating pga1(G203R) allele) and Δpga1 (deleted pga1) showed a delayed and asynchronic germination pattern, and a decrease in the percentage of germination, which occurred in only 70-80% of the total conidia. In contrast, in strains expressing the dominant activating pga1(G42R) allele, germination occurred at earlier times and in 100% of conidia. In addition, strains with the pga1(G42R) allele were able to bypass the carbon source (glucose or sucrose) requirement for germination in about 64% of conidia. Thus Pga1 plays an important, but not essential, role in germination, mediating carbon source sensing. Regulation of germination by Pga1 is probably mediated by cAMP, as intracellular levels of this secondary messenger undergo a peak before the onset of germination only in strains with an active Pga1. Pga1 activity is also a determinant factor in the resistance to different stress conditions. Absence or inactivation of Pga1 allow growth on SDS-containing minimal medium, increase resistance of conidia to thermal and oxidative stress, and increase resistance of vegetative mycelium to thermal and osmotic stress. In contrast, constitutive activation of Pga1 causes a decrease in the resistance of conidia to thermal stress and of vegetative mycelium to thermal and osmotic stress. Together with our previously reported results, we show in this work that Pga1 plays a central role in the regulation of the whole growth-developmental program of this biotechnologically important fungus.


Assuntos
Carbono/metabolismo , Regulação para Baixo , Proteínas Fúngicas/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Penicillium chrysogenum/fisiologia , Esporos Fúngicos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Regulação Fúngica da Expressão Gênica , Penicillium chrysogenum/genética , Penicillium chrysogenum/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
3.
Biochem Cell Biol ; 86(1): 57-69, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18364746

RESUMO

Fungal heterotrimeric G proteins regulate different processes related to development, such as colony growth and asexual sporulation, the main mechanism of propagation in filamentous fungi. To gain insight into the mechanisms controlling growth and differentiation in the industrial penicillin producer Penicillioum chrysogenum, we investigated the role of the heterotrimeric Galpha subunit Pga1 in conidiogenesis. A pga1 deleted strain (Deltapga1) and transformants with constitutively activated (pga1G42R) and inactivated (pga1G203R) Pga1 alpha subunits were obtained. They showed phenotypes that clearly implicate Pga1 as an important negative regulator of conidiogenesis. Pga1 positively affected the level of intracellular cAMP, which acts as secondary messenger of Pga1-mediated signalling. Although cAMP has some inhibitory effect on conidiation, the regulation of asexual development by Pga1 is exerted mainly via cAMP-independent pathways. The regulation of conidiation by Pga1 is mediated by repression of the brlA and wetA genes. The Deltapga1 strain and transformants with the constitutively inactive Pga1G203R subunit developed a sporulation microcycle in submerged cultures triggered by the expression of brlA and wetA genes, which are deregulated in the absence of active Pga1. Our results indicate that although basic mechanisms for regulating conidiation are similar in most filamentous fungi, there are differences in the degree of involvement of specific pathways, such as the cAMP-mediated pathway, in the regulation of this process.


Assuntos
AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Penicillium chrysogenum/fisiologia , Meios de Cultura/química , Proteínas Fúngicas/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Regulação Fúngica da Expressão Gênica , Mutação , Penicillium chrysogenum/citologia , Penicillium chrysogenum/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...