Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896117

RESUMO

Dioscorea remotiflora, a perennial climbing herbaceous plant native to Mexico, produces tubers with great nutritional and ethnobotanical value. However, most ecological aspects of this plant remain unknown, which limits its cultivation and use. This is why the objective of this research was to characterize the ecogeography of D. remotiflora as a source to determine its edaphoclimatic adaptability and current and potential distribution. A comprehensive database encompassing 480 geo-referenced accessions was assembled from different data sources. Using the Agroclimatic Information System for México and Central America (SIAMEXCA), 42 environmental variables were formulated. The MaxEnt model within the Kuenm R package was employed to predict the species distribution. The findings reveal a greater presence of D. remotiflora in harsh environments, characterized by arid to semiarid conditions, poor soils, and hot climates with long dry periods. Niche modeling revealed that seven key variables determine the geographical distribution of D. remotiflora: precipitation of the warmest quarter, precipitation of the driest month, minimum temperature of the coldest month, November-April solar radiation, annual mean relative humidity, annual moisture availability index, and May-October mean temperature. The current potential distribution of D. remotiflora is 428,747.68 km2. Favorable regions for D. remotiflora coincide with its current presence sites, while other suitable areas, such as the Yucatán Peninsula, northeast region, and Gulf of Mexico, offer potential expansion opportunities for the species distribution. The comprehensive characterization of Dioscorea remotiflora, encompassing aspects such as its soil habitats and climate adaptation, becomes essential not only for understanding its ecology but also for maximizing its economic potential. This will enable not only its sustainable use but also the exploration of commercial applications in sectors such as the pharmaceutical and food industries, thus providing a broader approach for its conservation and optimal utilization in the near future.

2.
PLoS One ; 13(2): e0192676, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29451888

RESUMO

Adaptation of crops to climate change has motivated an increasing interest in the potential value of novel traits from wild species; maize wild relatives, the teosintes, harbor traits that may be useful to maize breeding. To study the ecogeographic distribution of teosinte we constructed a robust database of 2363 teosinte occurrences from published sources for the period 1842-2016. A geographical information system integrating 216 environmental variables was created for Mexico and Central America and was used to characterize the environment of each teosinte occurrence site. The natural geographic distribution of teosinte extends from the Western Sierra Madre of the State of Chihuahua, Mexico to the Pacific coast of Nicaragua and Costa Rica, including practically the entire western part of Mesoamerica. The Mexican annuals Zea mays ssp. parviglumis and Zea mays ssp. mexicana show a wide distribution in Mexico, while Zea diploperennis, Zea luxurians, Zea perennis, Zea mays ssp. huehuetenangensis, Zea vespertilio and Zea nicaraguensis had more restricted and distinct ranges, representing less than 20% of the total occurrences. Only 11.2% of teosinte populations are found in Protected Natural Areas in Mexico and Central America. Ecogeographical analysis showed that teosinte can cope with extreme levels of precipitation and temperatures during growing season. Modelling teosinte geographic distribution demonstrated congruence between actual and potential distributions; however, some areas with no occurrences appear to be within the range of adaptation of teosintes. Field surveys should be prioritized to such regions to accelerate the discovery of unknown populations. Potential areas for teosintes Zea mays ssp. mexicana races Chalco, Nobogame, and Durango, Zea mays ssp. huehuetenangensis, Zea luxurians, Zea diploperennis and Zea nicaraguensis are geographically separated; however, partial overlapping occurs between Zea mays ssp. parviglumis and Zea perennis, between Zea mays ssp. parviglumis and Zea diploperennis, and between Zea mays ssp. mexicana race Chalco and Zea mays ssp. mexicana race Central Plateau. Assessing priority of collecting for conservation showed that permanent monitoring programs and in-situ conservation projects with participation of local farmer communities are critically needed; Zea mays ssp. mexicana (races Durango and Nobogame), Zea luxurians, Zea diploperennis, Zea perennis and Zea vespertilio should be considered as the highest priority taxa.


Assuntos
Ecossistema , Geografia , Zea mays/classificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...