Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 11(2): 687-93, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21207930

RESUMO

Spatial confinement of electronic excitations in semiconductor nanocrystals (NCs) results in a significant enhancement of nonradiative Auger recombination (AR), such that AR processes can easily dominate the decay of multiexcitons. AR is especially detrimental to lasing applications of NCs, as optical gain in these structures explicitly relies on emission from multiexciton states. In standard NCs, AR rates scale linearly with inverse NC volume. Here, we investigate multiexciton dynamics in hetero-NCs composed of CdSe cores and CdS shells of tunable thickness. We observe a dramatic decrease in the AR rates at the initial stage of shell growth, which cannot be explained by traditional volume scaling alone. Rather, fluorescence-line-narrowing studies indicate that the suppression of AR correlates with the formation of an alloy layer at the core-shell interface suggesting that this effect derives primarily from the "smoothing" of the confinement potential associated with interfacial alloying. These data highlight the importance of NC interfacial structure in the AR process and provide general guidelines for the development of new nanostructures with suppressed AR for future lasing applications.


Assuntos
Compostos de Cádmio/química , Nanoestruturas/química , Nanotecnologia/instrumentação , Pontos Quânticos , Compostos de Selênio/química , Semicondutores , Sulfetos/química , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Porosidade
2.
Nano Lett ; 9(10): 3482-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19505082

RESUMO

Many potential applications of semiconductor nanocrystals are hindered by nonradiative Auger recombination wherein the electron-hole (exciton) recombination energy is transferred to a third charge carrier. This process severely limits the lifetime and bandwidth of optical gain, leads to large nonradiative losses in light-emitting diodes and photovoltaic cells, and is believed to be responsible for intermittency ("blinking") of emission from single nanocrystals. The development of nanostructures in which Auger recombination is suppressed has recently been the subject of much research in the colloidal nanocrystal field. Here, we provide direct experimental evidence that so-called "giant" nanocrystals consisting of a small CdSe core and a thick CdS shell exhibit a significant (orders of magnitude) suppression of Auger decay rates. As a consequence, even multiexcitons of a very high order exhibit significant emission efficiencies, which allows us to demonstrate optical amplification with an extraordinarily large bandwidth (>500 meV) and record low excitation thresholds. This demonstration represents an important milestone toward practical lasing technologies utilizing solution-processable colloidal nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...