Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(8): 2056-2064, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36795974

RESUMO

New heteromaterials, particularly those involving nanoscale elements such as nanotubes, have opened a wide window for the next generation of materials and devices. Here, we perform density functional theory (DFT) simulations combined with a Green's function (GF) scattering approach to investigate the electronic transport properties of defective heteronanotube junctions (hNTJs) made of (6,6) carbon nanotubes (CNT) with a boron nitride nanotube (BNNT) as scatterer. We used the sculpturene method to form different heteronanotube junctions with various types of defects in the boron nitride part. Our results show that the defects and the curvature induced by them have a nontrivial impact on the transport properties and, interestingly, lead to an increase of the conductance of the heteronanotube junctions compared to the free-defect junction. We also show that narrowing the BNNTs region leads to a large decrease of the conductance, an effect that is opposite to that of the defects.

2.
J Chem Phys ; 152(20): 204108, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486661

RESUMO

A review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta's flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin-orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as wannier90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering Siesta runs, and various post-processing utilities. Siesta has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments.

3.
Sci Rep ; 10(1): 496, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949171

RESUMO

We propose a new paradigm of electronic devices based only on two electrodes separated by a gap, i.e. without any functional element bridging them. We use a tight-binding model to show that, depending on the type of material of the electrodes and its structure, several electronic functionalities can be achieved: ohmic behaviour, rectification, negative differential resistance, spin-filtering and magnetoresistance. In particular, we show that it is possible to deliver a given functionality by changing the coupling between the surface and bulk states and between the surface states across the gap, which dramatically changes the current-voltage characteristics. These results prove that it is possible to have functional electronic and spintronic elements on the nanoscale without having physical components bridging the electrodes.

4.
Phys Chem Chem Phys ; 20(19): 13588-13597, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29736537

RESUMO

We propose a molecular switch based on copper dioxolene molecules with valence tautomeric properties. We study the system using density functional theory and a model Hamiltonian that can properly account for electronic correlations in these complex molecular systems. We compute the transport properties of the junction with a Cu-dioxolene unit sandwiched between gold electrodes and analyze its dependence on the valence tautomeric state of the molecule. We also study the effects of doping with ICl2 acceptor molecules on the magnetic and electronic features of the device. We find that in the absence of dopants, the Cu-dioxolene unit is weakly charged in a S = 1/2 spin state. However, the acceptors increase the charge state of the molecule and make possible a transition between the high-spin (S = 1) triplet and the low-spin (S = 0) singlet. The I-V dependence shows a manifestation of spin filtering and a voltage-induced multistable behavior that can have several applications in nanoscale electronic devices.

5.
J Phys Condens Matter ; 25(32): 325501, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23838608

RESUMO

We calculate the electronic and transport properties of a series of metalloporphyrin molecules sandwiched between gold electrodes using a combination of density functional theory and scattering theory. The impact of strong correlations at the central metallic atom is gauged by comparing our results obtained using conventional DFT and DFT + U approaches. The zero- and finite-bias transport properties may or may not show spin-filtering behavior, depending on the nature of the d state closest to the Fermi energy. The type of d state depends on the metallic atom and gives rise to interference effects that produce different Fano features. The inclusion of the U term opens a gap between the d states and changes the conductance and spin-filtering behavior qualitatively in some of the molecules. We explain the origin of the quantum interference effects found as due to the symmetry-dependent coupling between the d states and other molecular orbitals and propose the use of these systems as nanoscale chemical sensors. We also demonstrate that an adequate treatment of strong correlations is really necessary to correctly describe the transport properties of metalloporphyrins and similar molecular magnets.

6.
J Phys Condens Matter ; 23(26): 265302, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21666307

RESUMO

Monatomic chains of molybdenum encapsulated in single-walled carbon nanotubes (CNTs) of different chiralities are investigated using density functional theory. We determine the optimal size of the CNT for encapsulating a single atomic wire, as well as the most stable atomic arrangement adopted by the wire. We also study the transport properties in the ballistic regime by computing the transmission coefficients and tracing them back to the electronic conduction channels of the wire and the host. We predict that CNTs of appropriate radii encapsulating a Mo wire have metallic behavior, even if both the nanotube and the wire are insulators. Therefore, encapsulation of Mo wires in CNTs is a way to create conductive quasi-one-dimensional hybrid nanostructures.

7.
Nanotechnology ; 21(9): 095205, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20130348

RESUMO

We study the electrical and transport properties of monatomic Mo wires with different structural characteristics. We consider first periodic wires with interatomic distances ranging between the dimerized wire to that formed by equidistant atoms. We find that the dimerized case has a gap in the electronic structure which makes it insulating, as opposed to the equidistant or near-equidistant cases which are metallic. We also simulate two conducting one-dimensional Mo electrodes separated by a scattering region which contains a number of dimers between 1 and 6. The I-V characteristics strongly depend on the number of dimers and vary from ohmic to tunneling, with the presence of different gaps. We also find that stretched chains are ferromagnetic.

8.
Nanotechnology ; 19(45): 455203, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21832765

RESUMO

We study the electronic and transport properties of two novel molecular wires made of atomic chains of carbon atoms (polyynes) capped with either benzene-thiols or pyridines. While both molecules are structurally similar, the electrical conductance of benzene-thiol-capped chains attached to gold electrodes is found to be much higher than that of pyridine-capped chains. We predict that the conductance is almost independent of molecular length, which suggests that these molecules could be ideal molecular wires for sub-10 nm circuitry. Both systems exhibit negative differential resistance (NDR) but its origin and characteristics depend on the type of molecule. We find a novel type of NDR mechanism produced by the movement of the lowest unoccupied molecular orbital (LUMO) resonance with bias. We also show that by gating the pyridine-capped molecules it is possible to make the NDR disappear and dramatically modify the I-V characteristics and the length dependence.

9.
Phys Rev Lett ; 95(25): 256804, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16384492

RESUMO

Using first principles simulations we perform a detailed study of the structural, electronic, and transport properties of monatomic platinum chains, sandwiched between platinum electrodes. First, we demonstrate that the most stable atomic configuration corresponds to a zigzag arrangement that gradually straightens as the chains are stretched. Second, we find that the averaged conductance shows slight parity oscillations with the number of atoms in the chain. Additionally, the conductance of chains of fixed oscillates as the end atoms are pulled apart, due to the gradual closing and opening of conductance channels as the chain straightens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...