Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Chem Phys ; 160(22)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874103

RESUMO

Acetaldehyde is a very relevant atmospheric species whose photodissociation has been extensively studied in the first absorption band both experimentally and theoretically. Very few works have been reported on acetaldehyde photodissociation at higher excitation energies. In this work, the photodissociation dynamics of acetaldehyde is investigated by means of high-level multireference configuration interaction ab initio calculations. Five different fragmentation pathways of acetaldehyde are explored by calculating the potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distances. The excitation energy range covered in the study is up to 10 eV, nearly the ionization energy of acetaldehyde. We intend to rationalize the available experimental results and, in particular, to elucidate why some of the studied fragmentation pathways are experimentally observed in the different excitation energy regions and some others are not. Based on the shape of the calculated potential curves, we are able to explain the main findings of the available experiments, also suggesting possible dynamical dissociation mechanisms in the different energy regions. Thus, the reported potential curves are envisioned as a useful tool to interpret the currently available experiments as well as future ones on acetaldehyde photodissociation at excitation wavelengths in the range studied here.

2.
J Chem Phys ; 160(7)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38364009

RESUMO

Bromine atom (Br) reactions lead to ozone depletion in the troposphere and stratosphere. Photodegradation of bromocarbons is one of the main sources of bromine atoms in the atmosphere. Here, we use high-level ab initio methods, including spin-orbit effects, to study the photodissociation of the CH2Br radical. All possible fragmentation pathways, namely CH2Br + hν → CH2 + Br, HCBr + H, and CBr + H2, have been analyzed. Potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distance of each pathway have been calculated. Considering the actinic fluxes of solar irradiation in the troposphere and in the stratosphere in the relevant range of frequencies, it is found that the first five excited states of CH2Br can be accessed from the ground state. Analysis of the potential curves shows that the pathways producing CH2 + Br and HCBr + H can proceed through a fast direct dissociation mechanism, while the pathway leading to CBr + H2 involves much slower dissociation mechanisms like internal conversion between electronic states, predissociation, or tunneling through exit barriers. The main implications are that the two faster channels are predicted to be dominant, and the slower pathway is expected to be less relevant. The tropospheric and stratospheric solar actinic fluxes also allow for further dissociation of the HCBr and CBr fragments, generating additional Br atoms, provided that they survive possible collisions with other atmospheric reagents. Finally, we discuss the possible effect of each of the three CH2Br dissociation pathways on the depletion of atmospheric ozone.

3.
Phys Chem Chem Phys ; 25(30): 20365-20372, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37465906

RESUMO

Photodissociation of the CH2I radical and the CH2I+ cation is studied by means of high-level ab initio calculations, including spin-orbit effects. Potential-energy curves (PEC) along the dissociating bond distances involved in some fragmentation pathways of these species are computed for the ground and several excited electronic states. Based on the PECs obtained, the possible photodissociation mechanisms are analyzed and suggested. Significant differences are found between the fragmentation dynamics of the neutral radical and that of the cation. While a relatively simple dissociation dynamics is predicted for CH2I, more complex fragmentation mechanisms involving internal conversion and couplings between different excited electronic states are expected for CH2I+. The species studied here are relevant to atmospheric chemistry, and the present work can help to understand better how their photodissociation may affect chemical processes in the atmosphere.

4.
Phys Chem Chem Phys ; 24(12): 7387-7395, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35266503

RESUMO

Photodissociation of the vinyl radical through pathways CH2CH → CH2C + H, CH2CH → CHCH + H, and CH2CH → CH2 + CH is investigated by means of high-level ab initio calculations. Potential-energy curves (PECs) along the corresponding dissociating bond distance associated with the ground and several excited electronic states involved in the above fragmentation pathways, as well as the nonadiabatic couplings connecting the different states, are obtained. The findings of several experiments on vinyl photodissociation performed at different excitation wavelengths are analyzed and explained qualitatively in the light of the present PECs. A two-dimensional representation (consisting of radial and angular coordinates to represent one of the H atoms of the CH2 group) is also used to calculate the electronic states. The surfaces obtained reflect a rich variety of conical intersections, exit barriers, and nonadiabatic couplings leading to predissociation in different regions of energy and of the two coordinates, suggesting a complex photodissociation dynamics of the CH2CH → CHCH + H pathway, with rather different fragmentation mechanisms involved. The two-dimensional results also provide interesting information on the mechanism of in-plane hydrogen migration from the CH2 group to the CH one through a high-lying transition state.

5.
Phys Chem Chem Phys ; 23(45): 25911-25924, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34780593

RESUMO

The nonadiabatic photodissociation dynamics of the CH3 (and CD3) radical from the 3pz and 3s Rydberg states is investigated by applying a one-dimensional (1D) wave packet model that uses recently calculated ab initio 1D electronic potential-energy curves and nonadiabatic couplings. Calculated predissociation lifetimes are found to be too long as compared to the experimental ones. The 1D dynamical model, however, is able to predict qualitatively and explain the fragmentation mechanisms that produce the hydrogen-fragment translational energy distributions (TED) measured experimentally for the ground vibrational resonance of the 3pz and 3s Rydberg states (CH3(v = 0, 3pz) and CH3(v = 0, 3s)). The CH3(v = 0, 3pz) TED found experimentally displays a rather large energy spreading, while the experimental CH3(v = 0, 3s) TED is remarkably more localized in energy. The present model also predicts a widely spread CH3(v = 0, 3pz) TED, produced by a complex dissociation mechanism which involves predissociation to one dissociative valence state through a nonadiabatic coupling, as well as transfer of population to a second valence state through three conical intersections. Also in agreement with experiment, the model predicts a rather localized CH3(v = 0, 3s) TED because the conical intersections no longer operate in this photodissociation process, and predissociation occurs only into a single valence state. Another complex dissociation mechanism is predicted by the model for initial CH3(v > 0, 3s) and CD3(v > 0, 3s) resonances. In this case the mechanism is gradually activated, as vibrational excitation increases, by the interplay between the two nonadiabatic couplings connecting the 3s and 3px,y Rydberg states with the dissociative 2A1 valence state, and produces complex TEDs with signals from several resonances of both 3s and 3px,y. Thus the present 1D quantum model reveals a rich photodissociation dynamics of methyl, where a variety of complex fragmentation mechanisms is favored by the presence of different nonadiabatic couplings between the electronic states involved.

6.
Phys Chem Chem Phys ; 22(26): 14637-14644, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572415

RESUMO

It is demonstrated both numerically and mathematically that the dynamical behavior of an isolated resonance state, which comprises the resonance decay lifetime and the asymptotic fragment state distribution produced upon resonance decay, can be extensively controlled by means of quantum interference induced by a laser field in the weak-field regime. The control scheme applied is designed to induce interference between amplitudes excited at two different energies of the resonance line shape, namely the resonance energy and an additional energy. This scheme exploits the resonance property of possessing a nonzero energy width, which makes it possible that a resonance state may interfere with itself, and thus allows interference between the amplitudes excited at the two energies of the resonance width. The application of this scheme opens the possibility of a universal control of both the duration and the fragment product distribution outcome of any resonance-mediated molecular process.

7.
J Phys Chem A ; 123(34): 7394-7400, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31364851

RESUMO

A weak-field coherent control scheme is applied in order to enhance the decay lifetime of a superposition of overlapping resonance states. The scheme uses a pump laser field consisting of two pulses delayed in time, each of them exciting a different energy at which several resonances of the Ne-Br2(B) complex overlap. Simultaneous excitation of these two energies induces interference between the overlapping resonances, which causes an enhancement of the lifetime of the superposition created. By variation of the delay time between the pulses, the mechanism of resonance interference can be controlled and optimized to achieve a maximum lifetime enhancement. The optimal delay time between pulses leading to maximum superposition lifetime can be quantitatively predicted with a simple law. The effect of the interference mechanism on the lifetime enhancement is investigated. It is found that interference induces a transfer of amplitude between the different resonances back and forth, which delays significantly the natural resonance decay, increasing the global lifetime of the superposition. Due to the simplicity of the control scheme, a wide applicability is envisioned.

8.
Phys Chem Chem Phys ; 21(15): 7885-7893, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-30916089

RESUMO

A coherent control scheme is suggested to modify the output of photodissociation in a polyatomic system. The performance of the scheme is illustrated by applying it to the ultrafast photodissociation of CH3I in the A-band. The control scheme uses a pump laser weak field that combines two pulses of a few femtoseconds delayed in time. By varying the time delay between the pulses, the shape of the laser field spectral profile is modulated, which causes a change in the initial relative populations excited by the pump laser to the different electronic states involved in the photodissociation. Such a change in the relative populations produces different photodissociation outputs, which is the basis of the control achieved. The degree of control obtained over different photodissociation observables, like the branching ratio between the two dissociation channels of CH3I yielding I(2P3/2) and I*(2P1/2) and the fragment angular distributions associated with each channel, is investigated. These magnitudes are found to oscillate strongly with the time delay, with the branching ratio changing by factors between two and three. Substantial variations of the angular distributions also indicate that the scheme provides a high degree of control. Experimental application of the scheme to general polyatomic photodissociation processes should be straightforward.

9.
Phys Chem Chem Phys ; 21(14): 7491-7501, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30892329

RESUMO

A unified weak-field control scheme to modify the two properties that determine the whole behavior of a resonance state, namely the lifetime and the asymptotic fragment distribution produced upon resonance decay, is proposed. Control is exerted through quantum interference induced between overlapping resonances of the system, by exciting two different energies at which the resonances overlap. The scheme applies a laser field consisting of a first pulse that excites the energy of the resonance to be controlled, and two additional pulses that excite another different energy to induce interference, with a delay time with respect to the first pulse. Each of the two additional pulses is used to control one of the two resonance properties, by adjusting its corresponding delay time: with a relatively short delay time the second pulse controls the resonance lifetime, while with a very long delay time the third pulse modifies the asymptotic fragment distribution produced. The efficiency of the control of each resonance property is found to be strongly dependent on the choice of the second interfering energy, which allows for a more flexible control optimization by choosing a different energy for each property. The theory underlying the interference mechanism of the control scheme is developed and presented, and is applied to analyze and explain the results obtained. The present scheme thus appears to be a useful tool for controlling resonance-mediated molecular processes.

10.
Phys Rev Lett ; 121(15): 153204, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30362783

RESUMO

It is known that the long-time energy-resolved photofragment state distribution produced upon photodissociation of a molecule cannot be modified in the weak-field limit for a fixed pump pulse spectral profile. This work, however, demonstrates both computationally and mathematically that the above limitation can be circumvented in practice when the molecule presents overlapping resonances. It is shown that when two or more energies where the resonances overlap are excited by different laser pulses delayed in time, interference is induced between the product fragment states associated with the different energies populated. The occurrence of interference is found to be independent of the delay time between the pulses exciting the different energies. Thus, as demonstrated, this finding makes it possible to modify the fragment distribution at a given energy, as far in time and as many times as desired.

11.
Phys Chem Chem Phys ; 20(6): 3882-3887, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29354814

RESUMO

The enhancement of the resonance lifetime that occurs upon interference of two overlapping resonances excited coherently by two pulses with delayed time has been investigated as a function of the pulse temporal width and the delay time between the pulses. A general law predicting quantitatively the optimal delay time that maximizes the lifetime enhancement of the two resonances has been established in terms of the pulse width and of the lifetimes of both resonances when they are excited isolatedly. The specific form of the law and all the results found can be closely related to the characteristic features of the mechanism of interference between the overlapping resonances, providing a detailed understanding on how the mechanism operates. The proposed law is envisioned as a useful tool to design experimental strategies to control the resonance lifetime.

12.
Phys Chem Chem Phys ; 19(46): 31245-31254, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29143005

RESUMO

The electronic states and the spin-orbit couplings between them involved in the photodissociation process of the radical molecules CH3X, CH3X → CH3 + X (X = O, S), taking place after the Ã(2A1) ← X[combining tilde](2E) transition, have been investigated using highly correlated ab initio techniques. A two-dimensional representation of both the potential-energy surfaces (PESs) and the couplings is generated. This description includes the C-X dissociative mode and the CH3 umbrella mode. Spin-orbit effects are found to play a relevant role in the shape of the excited state potential-energy surfaces, particularly in the CH3S case where the spin-orbit couplings are more than twice more intense than in CH3O. The potential surfaces and couplings reported here for the present set of electronic states allow for the first complete description of the above photodissociation process. The different photodissociation mechanisms are analyzed and discussed in light of the results obtained.

13.
Chem Sci ; 8(7): 4804-4810, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28959402

RESUMO

The existence of a structure in a resonance state is systematically investigated. A resonance structure is defined as the energy dependence across the resonance width of the fragment state distributions produced upon resonance decay. Different types of resonances, both isolated and overlapping ones, have been explored for this purpose. It is found that isolated resonances do not present an appreciable energy dependence on the product state distributions. On the contrary, overlapping resonances exhibit a clear structure regarding the fragment distributions, which becomes increasingly more pronounced as the intensity of the overlap between the resonances increases. Such an energy dependence of the product distributions arises from the quantum interference between the amplitudes of the overlapping resonances, as demonstrated formally here by the equations derived from the condition of resonance overlap. The application of the present effect to the control of the fragment state distributions produced in a wide variety of molecular processes governed by resonance states is envisioned.

14.
Phys Chem Chem Phys ; 18(48): 33195-33203, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27892569

RESUMO

The ground and some excited electronic states of the methyl radical have been characterized by means of highly correlated ab intio techniques. The specific excited states investigated are those involved in the dissociation of the radical, namely the 3s and 3pz Rydberg states, and the A1 and B1 valence states crossing them, respectively. The C-H dissociative coordinate and the HCH bending angle were considered in order to generate the first two-dimensional ab initio representation of the potential surfaces of the above electronic states of CH3, along with the nonadiabatic couplings between them. Spectroscopic constants and frequencies calculated for the ground and bound excited states agree well with most of the available experimental data. Implications of the shape of the excited potential surfaces and couplings for the dissociation pathways of CH3 are discussed in the light of recent experimental results for dissociation from low-lying vibrational states of CH3. Based on the ab initio data some predictions are made regarding methyl photodissociation from higher initial vibrational states.

15.
J Chem Phys ; 144(14): 141102, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27083701

RESUMO

Control of the fragment state distributions produced upon decay of a resonance state is achieved by using a weak laser field consisting of two pulses with a varying time delay between them. It is shown that specific product fragment states can be significantly favored or quenched. The efficiency and flexibility of the control method are found to increase with increasing resonance width. The control scheme is completely independent of the specific system to which it is applied, which makes its applicability universal.

16.
Phys Chem Chem Phys ; 18(15): 10346-54, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27025779

RESUMO

Coherent control of the asymptotic photofragment state-resolved distributions by means of laser phase modulation in the weak-field limit is demonstrated computationally for a polyatomic molecule. The control scheme proposed applies a pump laser field consisting of two pulses delayed in time. Phase modulation of the spectral bandwidth profile of the laser field is achieved by varying the time delay between the pulses. The underlying equations show that such a phase modulation is effective in order to produce control effects on the asymptotic, long-time limit photofragment distributions only when the bandwidths of the two pulses overlap in a frequency range. The frequency overlap of the pulses gives rise to an interference term which is responsible for the modulation of the spectral profile shape. The magnitude of the range of spectral overlap between the pulses becomes an additional control parameter. The control scheme is illustrated computationally for the asymptotic photofragment state distributions produced from different scenarios of the Ne-Br2 predissociation. An experimental application of the control scheme is found to be straightforward.

17.
Phys Chem Chem Phys ; 17(43): 29072-8, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26459753

RESUMO

Resonance states play an important role in a large variety of physical and chemical processes. Thus, controlling the resonance behavior, and particularly a key property like the resonance lifetime, opens up the possibility of controlling those resonance mediated processes. While such a resonance control is possible by applying strong-field approaches, the development of flexible weak-field control schemes that do not alter significantly the system dynamics still remains a challenge. In this work, one such control scheme within the weak-field regime is proposed for the first time in order to modify the lifetime of an isolated resonance state. The basis of the scheme suggested is quantum interference between two pathways induced by laser fields, that pump wave packet amplitude to the target resonance under control. The simulations reported here show that the scheme allows for both enhancement and quenching of the resonance survival lifetime, being particularly flexible to achieve large lifetime enhancements. Control effects on the resonance lifetime take place only while the pulse is operating. In addition, the conditions required to generate the two interfering quantum pathways are found to be rather easy to meet for general systems, which makes the experimental implementation straightforward and implies the wide applicability of the control scheme.

18.
J Chem Phys ; 142(13): 134111, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25854232

RESUMO

The semiclassical Wigner theory (SCWT) of photodissociation dynamics, initially proposed by Brown and Heller [J. Chem. Phys. 75, 186 (1981)] in order to describe state distributions in the products of direct collinear photodissociations, was recently extended to realistic three-dimensional triatomic processes of the same type [Arbelo-González et al., Phys. Chem. Chem. Phys. 15, 9994 (2013)]. The resulting approach, which takes into account rotational motions in addition to vibrational and translational ones, was applied to a triatomic-like model of methyl iodide photodissociation and its predictions were found to be in nearly quantitative agreement with rigorous quantum results, but at a much lower computational cost, making thereby SCWT a potential tool for the study of polyatomic reaction dynamics. Here, we analyse the main reasons for this agreement by means of an elementary model of fragmentation explicitly dealing with the rotational motion only. We show that our formulation of SCWT makes it a semiclassical approximation to an approximate planar quantum treatment of the dynamics, both of sufficient quality for the whole treatment to be satisfying.

19.
J Phys Chem A ; 118(33): 6395-406, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24628085

RESUMO

The effect of intermolecular excitation on the vibrational predissociation lifetime is investigated systematically for different vdW complexes Rg-X2(B, v') (Rg = rare gas atom, X = halogen atom) by means of wave packet simulations. The lifetime as a function of intermolecular excitation displays a pattern of maxima and minima, with a similar shape for the different Rg-X2(B, v') complexes. The pattern is consistent with previous experimental findings involving lifetimes of intermolecular excitations in similar systems. The structure of the lifetime pattern is found to be determined by the shape of the resonance wave functions in the two van der Waals degrees of freedom, and more specifically by the magnitude of the overlap between the wave function and the coupling responsible for predissociation. Lifetime maxima and minima are associated with minima and maxima of this overlap, respectively. Implications for control of the complex lifetime are discussed.

20.
J Chem Phys ; 139(13): 134306, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24116567

RESUMO

It is shown that new possibilities for control of the lifetime of a system in a resonance state emerge when the density of resonances overlapping and interfering with the target resonance increases. When using a control scheme combining two pump laser pulses, it is found that increasing the density of resonance states overlapping with the target one increases the selectivity of the scheme applied, and leads to achieve a remarkably higher degree of control. Lifetime enhancements by factors up to 20 are obtained when this selectivity is applied. The underlying reasons for such strong enhancements are analyzed and explained in the light of the equations of the model applied. Application of this strategy to control and enhance the lifetime of a system in excited states is envisioned.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...