Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339408

RESUMO

Lightweight aggregate concretes (LWAC) are versatile and interesting materials for projects that require greater structural efficiency. Due to the difference that exists between the densities of the materials used in these types of concrete, during transport and mainly compaction, their aggregates tend to separate from the mortar matrix, floating towards the surface, a phenomenon called segregation. Segregation in LWAC can affect its durability properties, its density, and directly affect its structural efficiency. In this work, different concrete densities (1700 kg/m3 and 1900 kg/m3) manufactured with different dosages (two different lightweight aggregates) and compaction methods (one or two layers) were analyzed to verify the impact of segregation on its structural efficiency. For this purpose, the segregation index of the LWAC was obtained by means of the image analysis technique. In addition, to obtain their structural efficiency, the density and compressive strength were obtained at different heights of the tested specimens. The results show the vibration of the samples in two layers leads to a more efficient elimination of trapped air, a reduction in the risk of segregation, and better structural efficiency.

2.
Materials (Basel) ; 12(1)2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591624

RESUMO

Using durable materials is a sustainable solution for extending the lifetime of constructions. The use of crystalline admixtures makes cementitious materials more durable. They plug pores, capillary tracts and microcracks, blocking the entrance of water due to the formation of crystals that prevent the penetration of liquids. The literature has covered the performance of these admixtures on concrete, but studies on mortars are still scarce. The aim of this study is to investigate the effect of an aggressive environment (sulphuric acid solution-3 wt%) on mortars produced with different percentages of a crystalline admixture (1%, 1.5% and 2% by weight of cement content). Physical and mechanical properties were studied after immersing the mortars in a H2SO4 solution for 90 days. It was found that, after a 90-day sulphuric acid exposure, mortars with the crystalline admixture showed greater compressive strength than the control mortar, besides exhibiting lower mass loss. However, the crystalline admixture did not produce any significant effect on the capillary water absorption coefficient. In a nonaggressive environment, and in the short term, the crystalline admixture did not have a significant effect on the compressive strength, the capillary water absorption coefficient or the ultrasonic pulse velocity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...