Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 360: 121210, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781878

RESUMO

The food industry requires new production models that include more environmentally friendly waste management practices, considering that the environmental loads of solid waste and wastewater associated with this sector cause damage to the receiving ecosystems. The approach considered in this study focuses on the design and environmental assessment of an enzymatic process for the valorization of ferulic acid present in the effluent of a corn tortilla plant. The ferulic acid can be immobilized on chitosan so that the ferulic acid grafted chitosan can be used as a bioactive film with enhanced antioxidant properties with potential applications in the biotechnology sector. Its real projection approach requires the evaluation of its environmental and economic performance, trying to identify its benefits and potential in the value chain, using the Techno-Economic Analysis (TEA) as a phase for the conceptual design of the process and the Life Cycle Assessment (LCA) methodology for the environmental evaluation. It should be noted that the TEA indicators are promising, since the values of the financial indicators obtained are representative of the economic profitability, which makes the ferulic acid valorization a viable process. In terms of the environmental impact of the process, the buffer dose and the chitosan production process are identified as the main critical points. This double benefit in environmental and economic terms shows that the valorization of ferulic acid for chitosan functionalization is a promising alternative to improve the sustainability performance of corn processing.


Assuntos
Quitosana , Ácidos Cumáricos , Zea mays , Quitosana/química , Ácidos Cumáricos/química , Polímeros/química , Gerenciamento de Resíduos/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-31817344

RESUMO

BACKGROUND: Tetrabromobisphenol (TBBPA), a flame retardant compound, is considered a ubiquitous pollutant, with potential impact on the environment and human health. Several technologies have been applied to accelerate its degradation and minimize environmental impacts. Due to its aromaticity character, peroxidase enzymes may be employed to carry out its transformation in mild conditions. Therefore, the purpose of this work was to determine the capacity of the enzyme chloroperoxidase (CPO) to oxidize TBBPA in several water samples. METHODS: The oxidation capacity of CPO was evaluated in catalytic conditions using water samples from surface and groundwater, as well as effluents from wastewater treatment plants. The biocatalytic performance of CPO was improved due to its immobilization on nanofibers composed of polyvinyl alcohol and chitosan (PVA/chitosan). RESULTS: Free and immobilized CPO were able to transform more than 80% in short reaction times (60 min); producing more biodegradable and less toxic products. Particularly, the immobilized enzyme was catalytically active in a wider range of pH than the free enzyme with the possibility of reusing it up to five times. CONCLUSIONS: The biocatalytic oxidation of TBBPA under environmental conditions is highly efficient, even in complex media such as treated effluents of wastewater treatment plants.


Assuntos
Cloreto Peroxidase/química , Enzimas Imobilizadas/química , Retardadores de Chama , Nanofibras/química , Bifenil Polibromatos/química , Poluentes Ambientais/química , Oxirredução , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...