Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702562

RESUMO

Atom probe tomography (APT) is a powerful materials characterization technique capable of measuring the isotopically resolved three-dimensional (3D) structure of nanoscale specimens with atomic resolution. Modern APT instrumentation most often uses an optical pulse to trigger field ion evaporation-most commonly, the second or third harmonic of a Nd laser is utilized (∼λ = 532 nm or λ = 355 nm). Herein, we describe an APT instrument that utilizes ultrafast extreme ultraviolet (EUV) optical pulses to trigger field ion emission. The EUV light is generated via a commercially available high harmonic generation system based on a noble-gas-filled capillary. The centroid of the EUV spectrum is tunable from around 25 eV (λ = 50 nm) to 45 eV (λ = 28 nm), dependent on the identity of the gas in the capillary (Xe, Kr, or Ar). EUV pulses are delivered to the APT analysis chamber via a vacuum beamline that was optimized to maximize photon flux at the APT specimen apex while minimizing complexity. We describe the design of the beamline in detail, including the various compromises involved. We characterize the spectrum of the EUV light and its evolution as it propagates through the various optical elements. The EUV focus spot size is measured at the APT specimen plane, and the effects of misalignment are simulated and discussed. The long-term stability of the EUV source has been demonstrated for more than a year. Finally, APT mass spectra are shown, demonstrating the instrument's ability to successfully trigger field ion emission from semiconductors (Si, GaN) and insulating materials (Al2O3).

2.
Nanoscale ; 14(21): 7798-7806, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35535667

RESUMO

Sub-nanometer neutral chromium oxide clusters were produced in the gas phase through laser ablation and their low-lying excited state lifetimes were measured using femtosecond pump-probe spectroscopy. Time-dependent density functional theory calculations relate the trends in experimental lifetimes to the cluster's electronic structure. The photoexcited (CrO2)n (n < 5) cluster transients with the absence of up to four O atoms (CrnO2n-x, x < 5) exhibit a ∼30 fs and sub-ps lifetime, attributed to instantaneous metallic e-e scattering and vibrationally mediated charge carrier relaxation, respectively. A long-lived (>2 ps) response is found in both small and clusters with low O content, indicating that terminal CrO bonds facilitate efficient excited state relaxation. The ∼30 fs transient signal fraction grows nearly linearly with oxidation, matching the amount of O-2p to Cr-3d charge transfer character of the photoexcitation and suggesting a gradual transition between semiconducting and metallic behavior in chromium oxide clusters at the molecular level. The results presented herein suggest that the photocatalytic properties of chromium oxides can be tunable based on size and oxidation.

3.
Phys Chem Chem Phys ; 24(9): 5590-5597, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175274

RESUMO

The ultrafast electronic relaxation dynamics of neutral nickel oxide clusters were investigated with femtosecond pump-probe spectroscopy and supported with theoretical calculations to reveal that their excited state lifetimes are strongly dependent on the nature of the electronic transition. Absorption of a UV photon produces short-lived (lifetime ∼ 110 fs) dynamics in stoichiometric (NiO)n clusters (n < 6) that are attributed to a ligand to metal charge transfer (LMCT) and produces metallic-like electron-electron scattering. Oxygen vacancies introduce excitations with Ni-3d → Ni-4s and 3d → 4p character, which increases the lifetimes of the sub-picosecond response by up to 80% and enables the formation of long-lived (lifetimes >2.5 ps) states. The atomic precision and tunability of gas phase clusters are employed to highlight a unique reliance on the Ni orbital contributions to the photoexcited lifetimes, providing new insights to the analogous band edge excitation dynamics of strongly correlated bulk-scale NiO materials.

4.
J Phys Chem A ; 126(2): 211-220, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35005962

RESUMO

TD-DFT calculations were performed on neutral TinO2n, TinO2n-1, and TinO2n-2 clusters, where n ≤ 7. Calculations show the TinO2n clusters are closed shell systems containing empty d orbitals and that the partially filled d orbitals of the suboxide clusters have a profound effect on their structural, electronic, and topological properties. The low energy photoexcitations of TinO2n clusters are all O-2p to Ti-3d transitions, while the open-shell suboxide clusters are all characterized by d-d transitions that occur at a much smaller optical gap. Upon low energy photoabsorption, the localization of the hole is accompanied by a local bond elongation, i.e., polaron formation, whereas d-electrons are generally delocalized around the cluster. The properties of the clusters, including the oxygen binding energies and structures, were calculated to account for the variation in relative populations found in experimental cluster distributions. Several TinO2n-2 clusters contain higher symmetry which is reflected in their relative stability. In particular, the tetrahedral symmetry of Ti4O6 inhibits charge carrier localization and therefore exhibits higher stability.

5.
J Chem Phys ; 155(21): 211102, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879680

RESUMO

Excited state lifetimes of neutral titanium oxide clusters (TinO2n-x, n < 10, x < 4) were measured using a sequence of 400 nm pump and 800 nm probe femtosecond laser pulses. Despite large differences in electronic properties between the closed shell stoichiometric TinO2n clusters and the suboxide TinO2n-x (x = 1-3) clusters, the transient responses for all clusters contain a fast response of 35 fs followed by a sub-picosecond (ps) excited state lifetime. In this non-scalable size regime, subtle changes in the sub-ps lifetimes are attributed to variations in the coordination of Ti atoms and localization of charge carriers following UV photoexcitation. In general, clusters exhibit longer lifetimes with increased size and also with the addition of O atoms. This suggests that the removal of O atoms develops stronger Ti-Ti interactions as the system transitions from a semiconducting character to a fast metallic electronic relaxation mechanism.

6.
J Am Chem Soc ; 143(38): 15572-15575, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34516101

RESUMO

Excited state lifetimes of neutral Cr2On (n < 5) clusters were measured using femtosecond pump-probe spectroscopy. Density functional theory calculations reveal that the excited state dynamics are correlated with changes in the cluster's electronic structure with increasing oxidation. Upon absorption of a UV (400 nm) photon, the clusters exhibit features attributed to three separate relaxation processes. All clusters exhibit similar subpicosecond lifetimes, attributed to vibrational relaxation. However, the ∼30 fs transient signal fraction grows linearly with oxidation, matching the amount of O to Cr charge transfer character of the photoexcitation and highlighting a gradual transition between semiconducting and metallic behavior at the molecular level. A long-lived (>2.5 ps) response is recorded only in clusters with significant d-electron character, suggesting that adiabatic relaxation back to the ground state is efficient in heavily oxidized clusters, due to the presence of terminal O atoms. The simple picture of sequential oxidation of Cr2On reveals a linear variation in the contributions of each relaxation component to the total transient signals, therefore opening possibilities for the design of new molecular spintronic materials.

7.
J Phys Chem Lett ; 12(16): 4098-4103, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33885304

RESUMO

Neutral titanium oxide clusters of up to 1 nm in diameter (TiO2)n, with n < 10, are produced in a laser vaporization source and subsequently ionized by a sequence of femtosecond laser pulses. Using a 400 nm pump and 800 nm probe lasers, the excited state lifetimes of neutral (TiO2)n clusters are measured. All clusters exhibit a rapid relaxation lifetime of ∼35 fs, followed by a sub-picosecond lifetime that we attribute to carrier recombination. The excited state lifetimes oscillate with size, with even-numbered clusters possessing longer lifetimes. Density functional theory calculations show the excited state lifetimes are correlated with charge carrier localization or polaron-like formation in the excited states of neutral clusters. Thus, structural rigidity is suggested as a feature for extending excited state lifetimes in titania materials.

8.
Phys Chem Chem Phys ; 22(42): 24624-24632, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33095221

RESUMO

Neutral iron oxide clusters (FenOm, n, m ≤ 16) are produced in a laser vaporization source using O2 gas seeded in He. The neutral clusters are ionized with a sequence of femtosecond laser pulses and detected using time-of-flight mass spectrometry. Small clusters are confirmed to be most prominent in the stoichiometric (n = m) distribution, with m = n + 1 clusters observed above n = 4. Pump-probe spectroscopy is employed to study the dynamics of an electron transfer from an oxygen orbital to an iron nonbonding orbital of iron oxide clusters that is driven by absorption of a 400 nm photon. A bifurcation of the initial wavepacket occurs, where a femtosecond component is attributed to electron relaxation assisted through internuclear vibrational relaxation and high density of states, and a slow relaxation shows the formation of a bound excited state. The lifetime and relative ratio of the two pathways depend on both the cluster size and iron oxidation state. The femtosecond lifetime decreases with increased cluster size until a saturation timescale is achieved at n > 5. The relative population of the long-lived excited state decreases with cluster size and suggests that the excited electron remains on the Fe atom for >20 ps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...