Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 348: 113944, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896115

RESUMO

Fibroblast growth factor binding protein 3 (Fgfbp3) have been known to be crucial for the process of neural proliferation, differentiation, migration, and adhesion. However, the specific role and the molecular mechanisms of fgfbp3 in regulating the development of motor neurons remain unclear. In this study, we have investigated the function of fgfbp3 in morphogenesis and regeneration of motor neuron in zebrafish. Firstly, we found that fgfbp3 was localized in the motor neurons and loss of fgfbp3 caused the significant decrease of the length and branching number of the motor neuron axons, which could be partially rescued by fgfbp3 mRNA injection. Moreover, the fgfbp3 knockdown (KD) embryos demonstrated similar defects of motor neurons as identified in fgfbp3 knockout (KO) embryos. Furthermore, we revealed that the locomotion and startle response of fgfbp3 KO embryos were significantly restricted, which were partially rescued by the fgfbp3 overexpression. In addition, fgfbp3 KO remarkably compromised axonal regeneration of motor neurons after injury. Lastly, the malformation of motor neurons in fgfbp3 KO embryos was rescued by overexpressing drd1b or neurod6a, respectively, which were screened by transcriptome sequencing. Taken together, our results provide strong cellular and molecular evidence that fgfbp3 is crucial for the axonal morphogenesis and regeneration of motor neurons in zebrafish.


Assuntos
Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Neurônios Motores/metabolismo , Regeneração Nervosa/fisiologia , Neurogênese/fisiologia , Medula Espinal/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/antagonistas & inibidores , Técnicas de Inativação de Genes/métodos , Reflexo de Sobressalto/fisiologia , Medula Espinal/crescimento & desenvolvimento , Natação/fisiologia , Peixe-Zebra
2.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34117063

RESUMO

In the developing embryos, the cortical polarity regulator Par-3 is critical for establishing Notch signaling asymmetry between daughter cells during asymmetric cell division (ACD). How cortically localized Par-3 establishes asymmetric Notch activity in the nucleus is not understood. Here, using in vivo time-lapse imaging of mitotic radial glia progenitors in the developing zebrafish forebrain, we uncover that during horizontal ACD along the anteroposterior embryonic axis, endosomes containing the Notch ligand DeltaD (Dld) move toward the cleavage plane and preferentially segregate into the posterior (subsequently basal) Notchhi daughter. This asymmetric segregation requires the activity of Par-3 and dynein motor complex. Using label retention expansion microscopy, we further detect Par-3 in the cytosol colocalizing the dynein light intermediate chain 1 (Dlic1) onto Dld endosomes. Par-3, Dlic1, and Dld are associated in protein complexes in vivo. Our data reveal an unanticipated mechanism by which cytoplasmic Par-3 directly polarizes Notch signaling components during ACD.


Assuntos
Divisão Celular Assimétrica , Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Citosol/metabolismo , Dineínas/metabolismo , Endossomos/metabolismo , Proteínas Serina-Treonina Quinases , Peixe-Zebra/metabolismo
3.
J Cell Biol ; 220(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33284321

RESUMO

Vertebrate Hedgehog signals are transduced through the primary cilium, a specialized lipid microdomain that is required for Smoothened activation. Cilia-associated sterol and oxysterol lipids bind to Smoothened to activate the Hedgehog pathway, but how ciliary lipids are regulated is incompletely understood. Here we identified DHCR7, an enzyme that produces cholesterol, activates the Hedgehog pathway, and localizes near the ciliary base. We found that Hedgehog stimulation negatively regulates DHCR7 activity and removes DHCR7 from the ciliary microenvironment, suggesting that DHCR7 primes cilia for Hedgehog pathway activation. In contrast, we found that Hedgehog stimulation positively regulates the oxysterol synthase CYP7A1, which accumulates near the ciliary base and produces oxysterols that promote Hedgehog signaling in response to pathway activation. Our results reveal that enzymes involved in lipid biosynthesis in the ciliary microenvironment promote Hedgehog signaling, shedding light on how ciliary lipids are established and regulated to transduce Hedgehog signals.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Transferases Intramoleculares/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxisteróis/metabolismo , Transdução de Sinais , Esteróis/metabolismo , Animais , Microambiente Celular , Colesterol 7-alfa-Hidroxilase/metabolismo , Camundongos , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...