Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Sci Rep ; 14(1): 9848, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684744

RESUMO

Pathological data showed focal inflammation and regions of diffuse neuronal loss in the cortex of people with multiple sclerosis (MS). In this work, we applied a novel model ("soma and neurite density imaging (SANDI)") to multishell diffusion-weighted MRI data acquired in healthy subjects and people with multiple sclerosis (pwMS), in order to investigate inflammation and degeneration-related changes in the cortical tissue of pwMS. We aimed to (i) establish whether SANDI is applicable in vivo clinical data; (ii) investigate inflammatory and degenerative changes using SANDI soma fraction (fsoma)-a marker of cellularity-in both cortical lesions and in the normal-appearing-cortex and (iii) correlate SANDI fsoma with clinical and biological measures in pwMS. We applied a simplified version of SANDI to a clinical scanners. We then provided evidence that pwMS exhibited an overall decrease in cortical SANDI fsoma compared to healthy subjects, suggesting global degenerative processes compatible with neuronal loss. On the other hand, we have found that progressive pwMS showed a higher SANDI fsoma in the outer part of the cortex compared to relapsing-remitting pwMS, possibly supporting current pathological knowledge of increased innate inflammatory cells in these regions. A similar finding was obtained in subpial lesions in relapsing-remitting patients, reflecting existing pathological data in these lesion types. A significant correlation was found between SANDI fsoma and serum neurofilament light chain-a biomarker of inflammatory axonal damage-suggesting a relationship between SANDI soma fraction and inflammatory processes in pwMS again. Overall, our data show that SANDI fsoma is a promising biomarker to monitor changes in cellularity compatible with neurodegeneration and neuroinflammation in the cortex of MS patients.


Assuntos
Esclerose Múltipla , Humanos , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Biomarcadores , Neuritos/patologia , Inflamação/patologia , Inflamação/diagnóstico por imagem
2.
Neurology ; 102(1): e207768, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165377

RESUMO

BACKGROUND AND OBJECTIVES: Progression independent of relapse activity (PIRA) is a crucial determinant of overall disability accumulation in multiple sclerosis (MS). Accelerated brain atrophy has been shown in patients experiencing PIRA. In this study, we assessed the relation between PIRA and neurodegenerative processes reflected by (1) longitudinal spinal cord atrophy and (2) brain paramagnetic rim lesions (PRLs). Besides, the same relationship was investigated in progressive MS (PMS). Last, we explored the value of cross-sectional brain and spinal cord volumetric measurements in predicting PIRA. METHODS: From an ongoing multicentric cohort study, we selected patients with MS with (1) availability of a susceptibility-based MRI scan and (2) regular clinical and conventional MRI follow-up in the 4 years before the susceptibility-based MRI. Comparisons in spinal cord atrophy rates (explored with linear mixed-effect models) and PRL count (explored with negative binomial regression models) were performed between: (1) relapsing-remitting (RRMS) and PMS phenotypes and (2) patients experiencing PIRA and patients without confirmed disability accumulation (CDA) during follow-up (both considering the entire cohort and the subgroup of patients with RRMS). Associations between baseline MRI volumetric measurements and time to PIRA were explored with multivariable Cox regression analyses. RESULTS: In total, 445 patients with MS (64.9% female; mean [SD] age at baseline 45.0 [11.4] years; 11.2% with PMS) were enrolled. Compared with patients with RRMS, those with PMS had accelerated cervical cord atrophy (mean difference in annual percentage volume change [MD-APC] -1.41; p = 0.004) and higher PRL load (incidence rate ratio [IRR] 1.93; p = 0.005). Increased spinal cord atrophy (MD-APC -1.39; p = 0.0008) and PRL burden (IRR 1.95; p = 0.0008) were measured in patients with PIRA compared with patients without CDA; such differences were also confirmed when restricting the analysis to patients with RRMS. Baseline volumetric measurements of the cervical cord, whole brain, and cerebral cortex significantly predicted time to PIRA (all p ≤ 0.002). DISCUSSION: Our results show that PIRA is associated with both increased spinal cord atrophy and PRL burden, and this association is evident also in patients with RRMS. These findings further point to the need to develop targeted treatment strategies for PIRA to prevent irreversible neuroaxonal loss and optimize long-term outcomes of patients with MS.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Feminino , Criança , Masculino , Estudos de Coortes , Estudos Transversais , Encéfalo/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Doença Crônica
3.
JAMA Neurol ; 80(12): 1317-1325, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930670

RESUMO

Importance: Mechanisms contributing to disability accumulation in multiple sclerosis (MS) are poorly understood. Blood neurofilament light chain (NfL) level, a marker of neuroaxonal injury, correlates robustly with disease activity in people with MS (MS); however, data on the association between NfL level and disability accumulation have been conflicting. Objective: To determine whether and when NfL levels are elevated in the context of confirmed disability worsening (CDW). Design, Setting, and Participants: This study included 2 observational cohorts: results from the Expression, Proteomics, Imaging, Clinical (EPIC) study at the University of California San Francisco (since 2004) were confirmed in the Swiss Multiple Sclerosis Cohort (SMSC), a multicenter study in 8 centers since 2012. Data were extracted from EPIC in April 2022 (sampling July 1, 2004, to December 20, 2016) and SMSC in December 2022 (sampling June 6, 2012, to September 2, 2021). The study included 2 observational cohorts in tertiary MS centers. All participants of both cohorts with available NfL results were included in the study, and no eligible participants were excluded or declined to participate. Exposure: Association between NfL z scores and CDW. Main Outcome Measures: CDW was defined as Expanded Disability Status Scale (EDSS) worsening that was confirmed after 6 or more months and classified into CDW associated with clinical relapses (CDW-R) or independent of clinical relapses (CDW-NR). Visits were classified in relation to the disability worsening events into CDW(-2) for 2 visits preceding event, CDW(-1) for directly preceding event, CDW(event) for first diagnosis of EDSS increase, and the confirmation visit. Mixed linear and Cox regression models were used to evaluate NfL dynamics and to assess the association of NfL with future CDW, respectively. Results: A total of 3906 EPIC visits (609 participants; median [IQR] age, 42.0 [35.0-50.0] years; 424 female [69.6%]) and 8901 SMSC visits (1290 participants; median [IQR] age, 41.2 [32.5-49.9] years; 850 female [65.9%]) were included. In CDW-R (EPIC, 36 events; SMSC, 93 events), NfL z scores were 0.71 (95% CI, 0.35-1.07; P < .001) units higher at CDW-R(-1) in EPIC and 0.32 (95% CI, 0.14-0.49; P < .001) in SMSC compared with stable MS samples. NfL elevation could be detected preceding CDW-NR (EPIC, 191 events; SMSC, 342 events) at CDW-NR(-2) (EPIC: 0.23; 95% CI, 0.01-0.45; P = .04; SMSC: 0.28; 95% CI, 0.18-0.37; P < .001) and at CDW-NR(-1) (EPIC: 0.27; 95% CI, 0.11-0.44; P < .001; SMSC: 0.09; 95% CI, 0-0.18; P = .06). Those findings were replicated in the subgroup with relapsing-remitting MS. Time-to-event analysis confirmed the association between NfL levels and future CDW-R within approximately 1 year and CDW-NR (in approximately 1-2 years). Conclusions and Relevance: This cohort study documents the occurrence of NfL elevation in advance of clinical worsening and may hint to a potential window of ongoing dynamic central nervous system pathology that precedes the diagnosis of CDW.


Assuntos
Avaliação da Deficiência , Esclerose Múltipla , Proteínas de Neurofilamentos , Adulto , Feminino , Humanos , Biomarcadores/sangue , Estudos de Coortes , Progressão da Doença , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla Recidivante-Remitente , Proteínas de Neurofilamentos/sangue , Recidiva
4.
Prog Brain Res ; 282: 17-47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035908

RESUMO

Current theories postulate that numerical processing depends upon a brain circuit formed by regions and their connections; specialized in the representation and manipulation of the numerical properties of stimuli. It has been suggested that the damage of these network may cause Developmental Dyscalculia (DD): a persistent neurodevelopmental disorder that significantly interferes with academic performance and daily life activities that require mastery of mathematical notions and operations. However, most of the studies on the brain foundations of DD have focused on regions of interest associated with numerical processing, and have not addressed numerical cognition as a complex network phenomenon. The present study explored DD using a Graph Theory network approach. We studied the association between topological measures of integration and segregation of information processing in the brain proposed by Graph Theory; and individual variability in numerical performance in a group of 11 school-aged children with DD (5 of which presented with comorbidity with Developmental Dyslexia, the specific learning disorder for reading) and 17 typically developing peers. A statistically significant correlation was found between the Weber fraction (a measure of numerical representations' precision) and the Clustering Index (a measure of segregation of information processing) in the whole sample. The DD group showed significantly lower Characteristic Path Length (average shortest path length among all pairs of regions in the brain network) compared to controls. Also, differences in critical regions for the brain network performance (hubs) were found between groups. The presence of limbic hubs characterized the DD brain network while right Temporal and Frontal hubs found in controls were absent in the DD group. Our results suggest that the DD may be associated with alterations in anatomical brain connectivity that hinder the capacity to integrate and segregate numerical information.


Assuntos
Discalculia , Transtornos do Neurodesenvolvimento , Humanos , Criança , Encéfalo/diagnóstico por imagem , Leitura , Cognição
5.
Neuroimage Clin ; 39: 103491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37659189

RESUMO

INTRODUCTION: Over the past few years, the deep learning community has developed and validated a plethora of tools for lesion detection and segmentation in Multiple Sclerosis (MS). However, there is an important gap between validating models technically and clinically. To this end, a six-step framework necessary for the development, validation, and integration of quantitative tools in the clinic was recently proposed under the name of the Quantitative Neuroradiology Initiative (QNI). AIMS: Investigate to what extent automatic tools in MS fulfill the QNI framework necessary to integrate automated detection and segmentation into the clinical neuroradiology workflow. METHODS: Adopting the systematic Cochrane literature review methodology, we screened and summarised published scientific articles that perform automatic MS lesions detection and segmentation. We categorised the retrieved studies based on their degree of fulfillment of QNI's six-steps, which include a tool's technical assessment, clinical validation, and integration. RESULTS: We found 156 studies; 146/156 (94%) fullfilled the first QNI step, 155/156 (99%) the second, 8/156 (5%) the third, 3/156 (2%) the fourth, 5/156 (3%) the fifth and only one the sixth. CONCLUSIONS: To date, little has been done to evaluate the clinical performance and the integration in the clinical workflow of available methods for MS lesion detection/segmentation. In addition, the socio-economic effects and the impact on patients' management of such tools remain almost unexplored.


Assuntos
Instituições de Assistência Ambulatorial , Esclerose Múltipla , Humanos , Fluxo de Trabalho , Esclerose Múltipla/diagnóstico por imagem
6.
Neuroimage Clin ; 38: 103432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37210889

RESUMO

There is an ongoing debate about differential clinical outcome and associated adverse effects of deep brain stimulation (DBS) in Parkinson's disease (PD) targeting the subthalamic nucleus (STN) or the globus pallidus pars interna (GPi). Given that functional connectivity profiles suggest beneficial DBS effects within a common network, the empirical evidence about the underlying anatomical circuitry is still scarce. Therefore, we investigate the STN and GPi-associated structural covariance brain patterns in PD patients and healthy controls. We estimate GPi's and STN's whole-brain structural covariance from magnetic resonance imaging (MRI) in a normative mid- to old-age community-dwelling cohort (n = 1184) across maps of grey matter volume, magnetization transfer (MT) saturation, longitudinal relaxation rate (R1), effective transversal relaxation rate (R2*) and effective proton density (PD*). We compare these with the structural covariance estimates in patients with idiopathic PD (n = 32) followed by validation using a reduced size controls' cohort (n = 32). In the normative data set, we observed overlapping spatially distributed cortical and subcortical covariance patterns across maps confined to basal ganglia, thalamus, motor, and premotor cortical areas. Only the subcortical and midline motor cortical areas were confirmed in the reduced size cohort. These findings contrasted with the absence of structural covariance with cortical areas in the PD cohort. We interpret with caution the differential covariance maps of overlapping STN and GPi networks in patients with PD and healthy controls as correlates of motor network disruption. Our study provides face validity to the proposed extension of the currently existing structural covariance methods based on morphometry features to multiparameter MRI sensitive to brain tissue microstructure.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Globo Pálido/diagnóstico por imagem , Estimulação Encefálica Profunda/métodos , Gânglios da Base
7.
JAMA Neurol ; 80(3): 287-297, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745446

RESUMO

Importance: There is a lack of validated biomarkers for disability progression independent of relapse activity (PIRA) in multiple sclerosis (MS). Objective: To determine how serum glial fibrillary acidic protein (sGFAP) and serum neurofilament light chain (sNfL) correlate with features of disease progression vs acute focal inflammation in MS and how they can prognosticate disease progression. Design, Setting, and Participants: Data were acquired in the longitudinal Swiss MS cohort (SMSC; a consortium of tertiary referral hospitals) from January 1, 2012, to October 20, 2022. The SMSC is a prospective, multicenter study performed in 8 centers in Switzerland. For this nested study, participants had to meet the following inclusion criteria: cohort 1, patients with MS and either stable or worsening disability and similar baseline Expanded Disability Status Scale scores with no relapses during the entire follow-up; and cohort 2, all SMSC study patients who had initiated and continued B-cell-depleting treatment (ie, ocrelizumab or rituximab). Exposures: Patients received standard immunotherapies or were untreated. Main Outcomes and Measures: In cohort 1, sGFAP and sNfL levels were measured longitudinally using Simoa assays. Healthy control samples served as the reference. In cohort 2, sGFAP and sNfL levels were determined cross-sectionally. Results: This study included a total of 355 patients (103 [29.0%] in cohort 1: median [IQR] age, 42.1 [33.2-47.6] years; 73 female patients [70.9%]; and 252 [71.0%] in cohort 2: median [IQR] age, 44.3 [33.3-54.7] years; 156 female patients [61.9%]) and 259 healthy controls with a median [IQR] age of 44.3 [36.3-52.3] years and 177 female individuals (68.3%). sGFAP levels in controls increased as a function of age (1.5% per year; P < .001), were inversely correlated with BMI (-1.1% per BMI unit; P = .01), and were 14.9% higher in women than in men (P = .004). In cohort 1, patients with worsening progressive MS showed 50.9% higher sGFAP levels compared with those with stable MS after additional sNfL adjustment, whereas the 25% increase of sNfL disappeared after additional sGFAP adjustment. Higher sGFAP at baseline was associated with accelerated gray matter brain volume loss (per doubling: 0.24% per year; P < .001) but not white matter loss. sGFAP levels remained unchanged during disease exacerbations vs remission phases. In cohort 2, median (IQR) sGFAP z scores were higher in patients developing future confirmed disability worsening compared with those with stable disability (1.94 [0.36-2.23] vs 0.71 [-0.13 to 1.73]; P = .002); this was not significant for sNfL. However, the combined elevation of z scores of both biomarkers resulted in a 4- to 5-fold increased risk of confirmed disability worsening (hazard ratio [HR], 4.09; 95% CI, 2.04-8.18; P < .001) and PIRA (HR, 4.71; 95% CI, 2.05-9.77; P < .001). Conclusions and Relevance: Results of this cohort study suggest that sGFAP is a prognostic biomarker for future PIRA and revealed its complementary potential next to sNfL. sGFAP may serve as a useful biomarker for disease progression in MS in individual patient management and drug development.


Assuntos
Esclerose Múltipla , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Estudos de Coortes , Proteína Glial Fibrilar Ácida , Filamentos Intermediários/metabolismo , Estudos Prospectivos , Progressão da Doença , Biomarcadores , Proteínas de Neurofilamentos , Recidiva
8.
Neuroimage Clin ; 37: 103349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36801600

RESUMO

OBJECTIVES AND AIMS: Quantitative MRI (qMRI) has greatly improved the sensitivity and specificity of microstructural brain pathology in multiple sclerosis (MS) when compared to conventional MRI (cMRI). More than cMRI, qMRI also provides means to assess pathology within the normal-appearing and lesion tissue. In this work, we further developed a method providing personalized quantitative T1 (qT1) abnormality maps in individual MS patients by modeling the age dependence of qT1 alterations. In addition, we assessed the relationship between qT1 abnormality maps and patients' disability, in order to evaluate the potential value of this measurement in clinical practice. METHODS: We included 119 MS patients (64 relapsing-remitting MS (RRMS), 34 secondary progressive MS (SPMS), 21 primary progressive MS (PPMS)), and 98 Healthy Controls (HC). All individuals underwent 3T MRI examinations, including Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) for qT1 maps and High-Resolution 3D Fluid Attenuated Inversion Recovery (FLAIR) imaging. To calculate personalized qT1 abnormality maps, we compared qT1 in each brain voxel in MS patients to the average qT1 obtained in the same tissue (grey/white matter) and region of interest (ROI) in healthy controls, hereby providing individual voxel-based Z-score maps. The age dependence of qT1 in HC was modeled using linear polynomial regression. We computed the average qT1 Z-scores in white matter lesions (WMLs), normal-appearing white matter (NAWM), cortical grey matter lesions (GMcLs) and normal-appearing cortical grey matter (NAcGM). Lastly, a multiple linear regression (MLR) model with the backward selection including age, sex, disease duration, phenotype, lesion number, lesion volume and average Z-score (NAWM/NAcGM/WMLs/GMcLs) was used to assess the relationship between qT1 measures and clinical disability (evaluated with EDSS). RESULTS: The average qT1 Z-score was higher in WMLs than in NAWM. (WMLs: 1.366 ± 0.409, NAWM: -0.133 ± 0.288, [mean ± SD], p < 0.001). The average Z-score in NAWM in RRMS patients was significantly lower than in PPMS patients (p = 0.010). The MLR model showed a strong association between average qT1 Z-scores in white matter lesions (WMLs) and EDSS (R2 = 0.549, ß = 0.178, 97.5 % CI = 0.030 to 0.326, p = 0.019). Specifically, we measured a 26.9 % increase in EDSS per unit of qT1 Z-score in WMLs in RRMS patients (R2 = 0.099, ß = 0.269, 97.5 % CI = 0.078 to 0.461, p = 0.007). CONCLUSIONS: We showed that personalized qT1 abnormality maps in MS patients provide measures related to clinical disability, supporting the use of those maps in clinical practice.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
9.
Mult Scler Relat Disord ; 71: 104545, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758461

RESUMO

BACKGROUND: Although cervical spinal cord (cSC) area is an established biomarker in MS, there is currently a lack of longitudinal assessments of cSC gray and white matter areas. OBJECTIVE: We conducted an explorative analysis of longitudinal changes of cSC gray and white matter areas in MS patients. METHODS: 65 MS patients (33 relapsing-remitting; 20 secondary progressive and 12 primary progressive) and 20 healthy controls (HC) received clinical and upper cSC MRI assessments over 1.10±0.28 years. cSC compartments were quantified on MRI using the novel averaged magnetization inversion recovery acquisitions sequence (in-plane resolution=0.67 × 0.67mm2), and in-house developed post-processing methods. Patients were stratified regarding clinical progression. RESULTS: Patients with clinical progression showed faster reduction of cSC areas over time at the level of cSC enlargement (approximate vertebral level C4-C5) compared to stable patients (p<0.05). In addition, when compared to the rostral-cSC (approximate vertebral level C2-C3), a preferential reduction of cSC and white matter areas over time at the level of cSC enlargement (p<0.05 and p<0.01, respectively) was demonstrated only in patients with clinical progression, but not in stable MS patients and HC. Compared to HC, MS patients showed comparable changes over time in all cSC compartments. CONCLUSIONS: MS patients with clinical disease progression demonstrate subtle signs of a more pronounced tissue loss at the level of cSC enlargement. Future studies should consider larger sample sizes and more extended observation periods.


Assuntos
Medula Cervical , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Medula Cervical/diagnóstico por imagem , Medula Cervical/patologia , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Imageamento por Ressonância Magnética/métodos , Progressão da Doença , Atrofia/patologia , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia
10.
J Magn Reson Imaging ; 58(3): 864-876, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36708267

RESUMO

BACKGROUND: Detecting new and enlarged lesions in multiple sclerosis (MS) patients is needed to determine their disease activity. LeMan-PV is a software embedded in the scanner reconstruction system of one vendor, which automatically assesses new and enlarged white matter lesions (NELs) in the follow-up of MS patients; however, multicenter validation studies are lacking. PURPOSE: To assess the accuracy of LeMan-PV for the longitudinal detection NEL white-matter MS lesions in a multicenter clinical setting. STUDY TYPE: Retrospective, longitudinal. SUBJECTS: A total of 206 patients with a definitive MS diagnosis and at least two follow-up MRI studies from five centers participating in the Swiss Multiple Sclerosis Cohort study. Mean age at first follow-up = 45.2 years (range: 36.9-52.8 years); 70 males. FIELD STRENGTH/SEQUENCE: Fluid attenuated inversion recovery (FLAIR) and T1-weighted magnetization prepared rapid gradient echo (T1-MPRAGE) sequences at 1.5 T and 3 T. ASSESSMENT: The study included 313 MRI pairs of datasets. Data were analyzed with LeMan-PV and compared with a manual "reference standard" provided by a neuroradiologist. A second rater (neurologist) performed the same analysis in a subset of MRI pairs to evaluate the rating-accuracy. The Sensitivity (Se), Specificity (Sp), Accuracy (Acc), F1-score, lesion-wise False-Positive-Rate (aFPR), and other measures were used to assess LeMan-PV performance for the detection of NEL at 1.5 T and 3 T. The performance was also evaluated in the subgroup of 123 MRI pairs at 3 T. STATISTICAL TESTS: Intraclass correlation coefficient (ICC) and Cohen's kappa (CK) were used to evaluate the agreement between readers. RESULTS: The interreader agreement was high for detecting new lesions (ICC = 0.97, Pvalue < 10-20 , CK = 0.82, P value = 0) and good (ICC = 0.75, P value < 10-12 , CK = 0.68, P value = 0) for detecting enlarged lesions. Across all centers, scanner field strengths (1.5 T, 3 T), and for NEL, LeMan-PV achieved: Acc = 61%, Se = 65%, Sp = 60%, F1-score = 0.44, aFPR = 1.31. When both follow-ups were acquired at 3 T, LeMan-PV accuracy was higher (Acc = 66%, Se = 66%, Sp = 66%, F1-score = 0.28, aFPR = 3.03). DATA CONCLUSION: In this multicenter study using clinical data settings acquired at 1.5 T and 3 T, and variations in MRI protocols, LeMan-PV showed similar sensitivity in detecting NEL with respect to other recent 3 T multicentric studies based on neural networks. While LeMan-PV performance is not optimal, its main advantage is that it provides automated clinical decision support integrated into the radiological-routine flow. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Assuntos
Esclerose Múltipla , Substância Branca , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos de Coortes , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
11.
Mult Scler ; 29(6): 702-718, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36550626

RESUMO

BACKGROUND: Spinal cord (SC) gray and white matter pathology plays a central role in multiple sclerosis (MS). OBJECTIVE: We aimed to investigate the extent, pattern, and clinical relevance of SC gray and white matter atrophy in vivo. METHODS: 39 relapsing-remitting patients (RRMS), 40 progressive MS patients (PMS), and 24 healthy controls (HC) were imaged at 3T using the averaged magnetization inversion recovery acquisitions sequence. Total and lesional cervical gray and white matter, and posterior (SCPH) and anterior horn (SCAH) areas were automatically quantified. Clinical assessment included the expanded disability status scale, timed 25-foot walk test, nine-hole peg test, and the 12-item MS walking scale. RESULTS: PMS patients had significantly reduced cervical SCAH - but not SCPH - areas compared with HC and RRMS (both p < 0.001). In RRMS and PMS, the cervical SCAH areas increased significantly less in the region of cervical SC enlargement compared with HC (all p < 0.001). This reduction was more pronounced in PMS compared with RRMS (both p < 0.001). In PMS, a lower cervical SCAH area was the most important magnetic resonance imaging (MRI)-variable for higher disability scores. CONCLUSION: MS patients show clinically relevant cervical SCAH atrophy, which is more pronounced in PMS and at the level of cervical SC enlargement.


Assuntos
Medula Cervical , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Medula Cervical/diagnóstico por imagem , Medula Cervical/patologia , Esclerose Múltipla/patologia , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética , Atrofia/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia
12.
Brain Pathol ; 33(6): e13136, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36480267

RESUMO

Quantitative MRI (qMRI) probes the microstructural properties of the central nervous system (CNS) by providing biophysical measures of tissue characteristics. In this work, we aimed to (i) identify qMRI measures that distinguish histological lesion types in postmortem multiple sclerosis (MS) brains, especially the remyelinated ones; and to (ii) investigate the relationship between those measures and quantitative histological markers of myelin, axons, and astrocytes in the same experimental setting. Three fixed MS whole brains were imaged with qMRI at 3T to obtain magnetization transfer ratio (MTR), myelin water fraction (MWF), quantitative T1 (qT1), quantitative susceptibility mapping (QSM), fractional anisotropy (FA) and radial diffusivity (RD) maps. The identification of lesion types (active, inactive, chronic active, or remyelinated) and quantification of tissue components were performed using histological staining methods as well as immunohistochemistry and immunofluorescence. Pairwise logistic and LASSO regression models were used to identify the best qMRI discriminators of lesion types. The association between qMRI and quantitative histological measures was performed using Spearman's correlations and linear mixed-effect models. We identified a total of 65 lesions. MTR and MWF best predicted the chance of a lesion to be remyelinated, whereas RD and QSM were useful in the discrimination of active lesions. The measurement of microstructural properties through qMRI did not show any difference between chronic active and inactive lesions. MWF and RD were associated with myelin content in both lesions and normal-appearing white matter (NAWM), FA was the measure most associated with axon content in both locations, while MWF was associated with astrocyte immunoreactivity only in lesions. Moreover, we provided evidence of extensive astrogliosis in remyelinated lesions. Our study provides new information on the discriminative power of qMRI in differentiating MS lesions -especially remyelinated ones- as well as on the relative association between multiple qMRI measures and myelin, axon and astrocytes.


Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Bainha de Mielina/patologia
13.
Front Neurosci ; 17: 1228952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239829

RESUMO

Introduction: Recent studies showed that the myelin of the brain changes in the life span, and demyelination contributes to the loss of brain plasticity during normal aging. Diffusion-weighted magnetic resonance imaging (dMRI) allows studying brain connectivity in vivo by mapping axons in white matter with tractography algorithms. However, dMRI does not provide insight into myelin; thus, combining tractography with myelin-sensitive maps is necessary to investigate myelin-weighted brain connectivity. Tractometry is designated for this purpose, but it suffers from some serious limitations. Our study assessed the effectiveness of the recently proposed Myelin Streamlines Decomposition (MySD) method in estimating myelin-weighted connectomes and its capacity to detect changes in myelin network architecture during the process of normal aging. This approach opens up new possibilities compared to traditional Tractometry. Methods: In a group of 85 healthy controls aged between 18 and 68 years, we estimated myelin-weighted connectomes using Tractometry and MySD, and compared their modulation with age by means of three well-known global network metrics. Results: Following the literature, our results show that myelin development continues until brain maturation (40 years old), after which degeneration begins. In particular, mean connectivity strength and efficiency show an increasing trend up to 40 years, after which the process reverses. Both Tractometry and MySD are sensitive to these changes, but MySD turned out to be more accurate. Conclusion: After regressing the known predictors, MySD results in lower residual error, indicating that MySD provides more accurate estimates of myelin-weighted connectivity than Tractometry.

14.
Front Neurosci ; 16: 992165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340780

RESUMO

Background: Growing evidence suggests that the central nervous system is affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), since infected patients suffer from acute and long-term neurological sequelae. Nevertheless, it is currently unknown whether the virus affects the brain cortex. The purpose of this study was to assess the cortical gray matter volume, the cortical thickness, and the cortical surface area in a group of SARS-CoV-2 infected patients with neurological symptoms compared to healthy control subjects. Additionally, we analyzed the cortical features and the association with inflammatory biomarkers in the cerebrospinal fluid (CSF) and plasma. Materials and methods: Thirty-three patients were selected from a prospective cross-sectional study cohort during the ongoing pandemic (August 2020-April 2021) at the university hospitals of Basel and Zurich (Switzerland). The group included patients with different neurological symptom severity (Class I: nearly asymptomatic/mild symptoms, II: moderate symptoms, III: severe symptoms). Thirty-three healthy age and sex-matched subjects that underwent the same MRI protocol served as controls. For each anatomical T1w MPRAGE image, regional cortical gray matter volume, thickness, and surface area were computed with FreeSurfer. Using a linear regression model, cortical measures were compared between groups (patients vs. controls; Class I vs. II-III), with age, sex, MRI magnetic field strength, and total intracranial volume/mean thickness/total surface area as covariates. In a subgroup of patients, the association between cortical features and clinical parameters was assessed using partial correlation adjusting for the same covariates. P-values were corrected using a false discovery rate (FDR). Results: Our findings revealed a lower cortical volume in COVID-19 patients' orbitofrontal, frontal, and cingulate regions than in controls (p < 0.05). Regional gray matter volume and thickness decreases were negatively associated with CSF total protein levels, the CSF/blood-albumin ratio, and CSF EN-RAGE levels. Conclusion: Our data suggest that viral-triggered inflammation leads to neurotoxic damage in some cortical areas during the acute phase of a COVID-19 infection in patients with neurological symptoms.

15.
Nat Commun ; 13(1): 6777, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351919

RESUMO

Growing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes. The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , Estudos Transversais , SARS-CoV-2 , Autoimunidade , Estudos Prospectivos , Síndrome de COVID-19 Pós-Aguda
16.
Neuroimage Clin ; 36: 103177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36067611

RESUMO

INTRODUCTION: Multiple Sclerosis (MS) is a common neurological disease primarily characterized by myelin damage in lesions and in normal - appearing white and gray matter (NAWM, NAGM). Several quantitative MRI (qMRI) methods are sensitive to myelin characteristics by measuring specific tissue biophysical properties. However, there are currently few studies assessing the relative reproducibility and sensitivity of qMRI measures to MS pathology in vivo in patients. METHODS: We performed two studies. The first study assessed of the sensitivity of qMRI measures to MS pathology: in this work, we recruited 150 MS and 100 healthy subjects, who underwent brain MRI at 3 T including quantitative T1 mapping (qT1), quantitative susceptibility mapping (QSM), magnetization transfer saturation imaging (MTsat) and myelin water imaging for myelin water fraction (MWF). The sensitivity of qMRIs to MS focal pathology (MS lesions vs peri-plaque white/gray matter (PPWM/PPGM)) was studied lesion-wise; the sensitivity to diffuse normal appearing (NA) pathology was measured using voxel-wise threshold-free cluster enhancement (TFCE) in NAWM and vertex-wise inflated cortex analysis in NAGM. Furthermore, the sensitivity of qMRI to the identification of lesion tissue was investigated using a voxel-wise logistic regression analysis to distinguish MS lesion and PP voxels. The second study assessed the reproducibility of myelin-sensitive qMRI measures in a single scanner. To evaluate the intra-session and inter-session reproducibility of qMRI measures, we have investigated 10 healthy subjects, who underwent two brain 3 T MRIs within the same day (without repositioning), and one after 1-week interval. Five region of interest (ROIs) in white and deep grey matter areas were segmented, and inter- and intra- session reproducibility was studied using the intra-class correlation coefficient (ICC). Further, we also investigated the voxel-wise reproducibility of qMRI measures in NAWM and NAGM. RESULTS: qT1 and QSM showed the highest sensitivity to distinguish MS focal WM and cortical pathology from peri-plaque WM (P < 0.0001), although QSM also showed the highest variance when applied to lesions. MWF and MTsat exhibited the highest sensitivity to NAWM pathology (P < 0.01). On the other hand, qT1 appeared to be the most sensitive measure to NAGM pathology (P < 0.01). All myelin-sensitive qMRI measures exhibited high inter/intra sessional ICCs in various WM and deep GM ROIs, in NAWM and in NAGM (ICC 0.82 ± 0.12). CONCLUSION: This work shows that the applied qT1, MWF, MTsat and QSM are highly reproducible and exhibit differential sensitivity to focal and diffuse WM and GM pathology in MS patients.


Assuntos
Esclerose Múltipla , Bainha de Mielina , Humanos , Bainha de Mielina/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Água , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
17.
JAMA Neurol ; 79(7): 682-692, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35575778

RESUMO

Importance: The mechanisms driving neurodegeneration and brain atrophy in relapsing multiple sclerosis (RMS) are not completely understood. Objective: To determine whether disability progression independent of relapse activity (PIRA) in patients with RMS is associated with accelerated brain tissue loss. Design, Setting, and Participants: In this observational, longitudinal cohort study with median (IQR) follow-up of 3.2 years (2.0-4.9), data were acquired from January 2012 to September 2019 in a consortium of tertiary university and nonuniversity referral hospitals. Patients were included if they had regular clinical follow-up and at least 2 brain magnetic resonance imaging (MRI) scans suitable for volumetric analysis. Data were analyzed between January 2020 and March 2021. Exposures: According to the clinical evolution during the entire observation, patients were classified as those presenting (1) relapse activity only, (2) PIRA episodes only, (3) mixed activity, or (4) clinical stability. Main Outcomes and Measures: Mean difference in annual percentage change (MD-APC) in brain volume/cortical thickness between groups, calculated after propensity score matching. Brain atrophy rates, and their association with the variables of interest, were explored with linear mixed-effect models. Results: Included were 1904 brain MRI scans from 516 patients with RMS (67.4% female; mean [SD] age, 41.4 [11.1] years; median [IQR] Expanded Disability Status Scale score, 2.0 [1.5-3.0]). Scans with insufficient quality were excluded (n = 19). Radiological inflammatory activity was associated with increased atrophy rates in several brain compartments, while an increased annualized relapse rate was linked to accelerated deep gray matter (GM) volume loss. When compared with clinically stable patients, patients with PIRA had an increased rate of brain volume loss (MD-APC, -0.36; 95% CI, -0.60 to -0.12; P = .02), mainly driven by GM loss in the cerebral cortex. Patients who were relapsing presented increased whole brain atrophy (MD-APC, -0.18; 95% CI, -0.34 to -0.02; P = .04) with respect to clinically stable patients, with accelerated GM loss in both cerebral cortex and deep GM. No differences in brain atrophy rates were measured between patients with PIRA and those presenting relapse activity. Conclusions and Relevance: Our study shows that patients with RMS and PIRA exhibit accelerated brain atrophy, especially in the cerebral cortex. These results point to the need to recognize the insidious manifestations of PIRA in clinical practice and to further evaluate treatment strategies for patients with PIRA in clinical trials.


Assuntos
Doenças do Sistema Nervoso Central , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Malformações do Sistema Nervoso , Doenças Neurodegenerativas , Adulto , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doenças do Sistema Nervoso Central/patologia , Avaliação da Deficiência , Progressão da Doença , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/complicações , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Recidiva
18.
Neuroimage Clin ; 32: 102799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34469849

RESUMO

There is evidence that gray matter networks are disrupted in Mild Cognitive Impairment (MCI) and associated with cognitive impairment and faster disease progression. However, it remains unknown how these alterations are related to the presence of Apolipoprotein E isoform E4 (ApoE4), the most prominent genetic risk factor for late-onset Alzheimer's disease (AD). To investigate this topic at the individual level, we explore the impact of ApoE4 and the disease progression on the Single-Subject Gray Matter Networks (SSGMNets) using the graph theory approach. Our data sample comprised 200 MCI patients selected from the ADNI database, classified as non-Converters and Converters (will progress into AD). Each group included 50 ApoE4-positive ('Carriers', ApoE4 + ) and 50 ApoE4-negative ('non-Carriers', ApoE4-). The SSGMNets were estimated from structural MRIs at two-time points: baseline and conversion. We investigated whether altered network topological measures at baseline and their rate of change (RoC) between baseline and conversion time points were associated with ApoE4 and disease progression. We also explored the correlation of SSGMNets attributes with general cognition score (MMSE), memory (ADNI-MEM), and CSF-derived biomarkers of AD (Aß42, T-tau, and P-tau). Our results showed that ApoE4 and the disease progression modulated the global topological network properties independently but not in their RoC. MCI converters showed a lower clustering index in several regions associated with neurodegeneration in AD. The SSGMNets' topological organization was revealed to be able to predict cognitive and memory measures. The findings presented here suggest that SSGMNets could indeed be used to identify MCI ApoE4 Carriers with a high risk for AD progression.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Disfunção Cognitiva , Alelos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Biomarcadores , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Substância Cinzenta/diagnóstico por imagem , Humanos
19.
Transl Psychiatry ; 11(1): 399, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285187

RESUMO

Many copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen's d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions.


Assuntos
Variações do Número de Cópias de DNA , Esquizofrenia , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética
20.
Neuroimage ; 229: 117735, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33454401

RESUMO

AIM: There is ongoing debate about the role of cortical and subcortical brain areas in force modulation. In a whole-brain approach, we sought to investigate the anatomical basis of grip force whilst acknowledging interindividual differences in connectivity patterns. We tested if brain lesion mapping in patients with unilateral motor deficits can inform whole-brain structural connectivity analysis in healthy controls to uncover the networks underlying grip force. METHODS: Using magnetic resonance imaging (MRI) and whole-brain voxel-based morphometry in chronic stroke patients (n=55) and healthy controls (n=67), we identified the brain regions in both grey and white matter significantly associated with grip force strength. The resulting statistical parametric maps (SPMs) provided seed areas for whole-brain structural covariance analysis in a large-scale community dwelling cohort (n=977) that included beyond volume estimates, parameter maps sensitive to myelin, iron and tissue water content. RESULTS: The SPMs showed symmetrical bilateral clusters of correlation between upper limb motor performance, basal ganglia, posterior insula and cortico-spinal tract. The covariance analysis with the seed areas derived from the SPMs demonstrated a widespread anatomical pattern of brain volume and tissue properties, including both cortical, subcortical nodes of motor networks and sensorimotor areas projections. CONCLUSION: We interpret our covariance findings as a biological signature of brain networks implicated in grip force. The data-driven definition of seed areas obtained from chronic stroke patients showed overlapping structural covariance patterns within cortico-subcortical motor networks across different tissue property estimates. This cumulative evidence lends face validity of our findings and their biological plausibility.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Força da Mão/fisiologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...