Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 10: 296, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979185

RESUMO

Single point mutations or variations in the expression of the gene encoding the neuronal glycoprotein M6a have been associated with psychiatric disorders such as Alzheimer's disease, depression and schizophrenia. In cultured neurons, M6a positively contributes to neurite extension, axon guidance, filopodia/spine outgrowth, and synapse formation. The endocytic processes of neuronal membrane proteins are linked to the differentiation, growth, signaling and plasticity of neurons. However, the roles of M6a and the precise mechanisms through which M6a internalizes and recycles back to the neuronal membrane are unknown. Here, by using a controlled in vitro assay, we showed that if 30-40% of M6a is endocytosed, the number of synapses in hippocampal neurons decreases. When re-establishing the levels of M6a at the cell surface, the number of synapses returned to normal values. M6a internalization involves clathrin-coated pits, probably by association between the adaptor protein 2 and the 251YEDI254 "tyrosine-based" motif located within the C-tail of M6a. Upon endocytosis, M6a is sorted to early endosome antigen 1- and Rab5-positive endosomes and then sorted back to the cell surface via Rab11-positive endosomes or to degradation via Rab7 and, finally LAMP-1-positive endosomes. Our results demonstrated that the levels of M6a at the cell surface modified the formation/maintenance of synapses, without altering the protein levels of synaptophysin or N-methyl-D-aspartate receptor type-1. This novel mechanism might be relevant during neuronal development, pruning and/or many of the neurological disorders in which the number of synapses is affected.

2.
Mol Cell Neurosci ; 77: 95-104, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27793698

RESUMO

Neuronal glycoprotein M6a belongs to the tetraspan proteolipid protein (PLP) family. Mutations in GPM6A gene have been related to mental disorders like schizophrenia, bipolar disorders and claustrophobia. M6a is expressed mainly in neuronal cells of the central nervous system and it has been extensively related to neuronal plasticity. M6a induces neuritogenesis and axon/filopodium outgrowth; however its mechanism of action is still unresolved. We recently reported that the integrity of the transmembrane domains (TMDs) 2 and 4 are critical for M6a filopodia induction. There is also experimental data suggesting that M6a might be involved in synaptogenesis. In this regard, we have previously determined that M6a is involved in filopodia motility, a process that is described in the first step of the filopodial model for synaptogenesis. In this work we analyzed the possible involvement of M6a in synaptogenesis and spinogenesis, and evaluated the effect of two non-synonymous SNPs present in the coding region of TMD2-GPM6A in these processes. The results showed that endogenous M6a colocalized with both, pre-synaptic (synaptophysin) and post-synaptic (NMDA-R1), markers along of neuronal soma and dendrites. M6a-overexpressing neurons displayed an increased number of synaptophysin and NMDA-R1 puncta and, also, an increased number of colocalization puncta between both markers. Conversely, the number of synaptic puncta markers in neurons expressing nsSNP variants was similar to those of control neurons. Overexpression of M6a is accompanied by an increase in spine density, particularly in mature spines, as compared with neurons expressing mGFP or GPM6A nsSNP variants. Taken together, these results suggest that M6a contributes positively to spine and, likely, synapse formation.


Assuntos
Espinhas Dendríticas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Sinapses/metabolismo , Animais , Feminino , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/metabolismo , Glicoproteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Sinaptofisina/metabolismo
3.
J Neurochem ; 134(3): 499-512, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25940868

RESUMO

Membrane glycoprotein M6a, which belongs to the tetraspan proteolipid protein family, promotes structural plasticity in neurons and cell lines by unknown mechanisms. This glycoprotein is encoded by Gpm6a, a stress-regulated gene. The hippocampus of animals chronically stressed by either psychosocial or physical stressors shows decreased M6a expression. Stressed Gpm6a-null mice develop a claustrophobia-like phenotype. In humans, de novo duplication of GPM6A results in learning/behavioral abnormalities, and two single-nucleotide polymorphisms (SNPs) in the non-coding region are linked to mood disorders. Here, we studied M6a dimerization in neuronal membranes and its functional relevance. We showed that the self-interaction of M6a transmembrane domains (TMDs) might be driving M6a dimerization, which is required to induce filopodia formation. Glycine mutants located in TMD2 and TMD4 of M6a affected its dimerization, thus preventing M6a-induced filopodia formation in neurons. In silico analysis of three non-synonymous SNPs located in the coding region of TMDs suggested that these mutations induce protein instability. Indeed, these SNPs prevented M6a from being functional in neurons, owing to decreased stability, dimerization or improper folding. Interestingly, SNP3 (W141R), which caused endoplasmic reticulum retention, is equivalent to that mutated in PLP1, W161L, which causes demyelinating Pelizaeus-Merzbacher disease. In this work we analyzed the functional contribution of transmembrane domains (TMDs) of the neuronal membrane glycoprotein M6a. We determined that certain glycines present in TMD2 and TMD4 are critical for filopodia induction in neurons. In addition, three nsSNPs located in the coding region of TMD2 and TMD3 of GPM6A impair M6a function by affecting its stability, folding and dimer formation.


Assuntos
Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Sequência de Aminoácidos , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Immunoblotting , Imuno-Histoquímica , Glicoproteínas de Membrana/química , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Polimorfismo de Nucleotídeo Único , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...