Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 327: 121483, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36990344

RESUMO

Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV-Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L-1 in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO3 (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe3+ and Mn2+ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe3+ and Mn2+ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water.


Assuntos
Manganês , Nanopartículas Metálicas , Prata , Ferro , Água , Extratos Vegetais , Antibacterianos
2.
FEMS Microbiol Ecol ; 98(4)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35348680

RESUMO

Cryptococcus gattii, an environmental yeast isolated from plants, is one of the agents of cryptococcosis. Here, we aimed to develop a plant model to study C. gattii-plant interaction, since it is unclear how it affects the plant and the yeast. We tested three inoculation methods (scarification, infiltration, and abrasion) in three plant species: Arabidopsis thaliana, Nicotiana tabacum, and N. benthamiana. Cryptococcus gattii was able to grow in all three models, with a peak of yeast cell burden after 7 days, without any pathological effects. Furthermore, the fungal burden was reduced later, confirming that C. gattii is not a phytopathogen. Cryptococcus gattii proliferation was higher in N. benthamiana, which presented an increase in the hydrogen peroxide content, antioxidant system activity, and indoleacetic acid (IAA) production. Cryptococcus gattii colonies recovered from N. benthamiana presented lower ergosterol content, reduced capsule, and increased growth rate in vitro and inside macrophages. In vitro, IAA altered C. gattii morphology and susceptibility to antifungal drugs. We hypothesize that C. gattii can temporarily colonize plant living tissues, which can be a potential reservoir of yeast virulence, with further dissemination to the environment, birds, and mammals. In conclusion, N. benthamiana is suitable for studying C. gattii-plant interaction.


Assuntos
Arabidopsis , Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Arabidopsis/microbiologia , Criptococose/microbiologia , Mamíferos , Saccharomyces cerevisiae , Nicotiana
3.
Planta ; 251(4): 86, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221719

RESUMO

MAIN CONCLUSION: ABA and GA metabolism during incubation rather than hormone contents in dry seeds is the key to understanding secondary dormancy and germination of Syngonanthus verticillatus seeds. The mechanism of seed dormancy cycle, although very important for preventing germination during unfavorable periods for seedling establishment, is poorly understood in tropical species. Here, we used a perennial tropical species of the Brazilian campo rupestre, Syngonanthus verticillatus (Eriocaulaceae), to investigate the involvement of ABA and GA in modulating secondary dormancy of seeds buried in situ over time and the dynamic of these hormones during the incubation of dormant and non-dormant seeds. Hormone analyses were carried out with freshly harvested seeds and on buried seeds exhumed after 3, 6 and 9 months. Dynamics of ABA and GAs in dormant and non-dormant seeds during incubation (0, 12, 24 and 36 h) under favorable conditions for germination (at 20 °C in the presence of light) were also investigated. In addition, the effects of GA4 and fluridone were evaluated for overcoming secondary dormancy. Our results showed that changes in the contents of both ABA and GA4 occurred after burial, suggesting they may be related to the modulation of secondary dormancy/germination of S. verticillatus seeds. The application of fluridone was more effective than GA4 at overcoming secondary dormancy. We conclude that during incubation, de novo ABA synthesis and its consequent maintenance at high contents regulate the inhibition of germination in dormant seeds, while GA4 synthesis and ABA catabolism modulate the germination of non-dormant seeds. ABA and GA metabolism during incubation of both dormant and non-dormant seeds rather than hormone contents of dry seeds in the field is thought to be the key to understanding secondary dormancy and germination.


Assuntos
Eriocaulaceae/fisiologia , Germinação/fisiologia , Dormência de Plantas/fisiologia , Sementes/metabolismo , Ácido Abscísico/metabolismo , Brasil , Giberelinas/metabolismo , Piridonas , Plântula/metabolismo
4.
Ann Bot ; 123(5): 867-876, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30596817

RESUMO

BACKGROUND AND AIMS: Different structures have been shown to act as a water gap in seeds with physical dormancy (PY), and in Fabaceae they are commonly located in the hilar region. However, the function of the pleurogram, a structure in the extra-hilar region that is common in legume seeds, remains unknown. Our aims were to review the literature for occurrence of the pleurogram in Fabaceae, determine if the pleurogram can open, and compare the functional morpho-anatomy of water gaps in seeds of 11 Senna species. METHODS: Imbibition tests showed that all 11 species had PY. Structural features of the hilar and extra-hilar regions of the seeds were investigated using light and scanning electron microscopy, and dye-tracking was performed to trace the pathways of water through the seed coat. KEY RESULTS: A pleurogram has been reported for 37 legume genera. Water gaps differed among Senna species, with lens, hilum, micropyle and pleurogram taking up water after PY was broken. In Senna alata seeds, only the pleurogram acted as a water gap, whereas in S. reniformis and S. silvestris water entered the seed through both the pleurogram and the hilar region. In the pleurogram of S. alata and S. reniformis, the palisade layer moved outward, exposing the hourglass cells, whereas in S. silvestris the palisade layer was broken. CONCLUSIONS: The pleurogram acts as a water gap in some of the 11 Senna species examined, but it is non-functional in others. Opening the pleurogram occurs due to the formation of a linear slit in the palisade layer. The pleurogram is of functional significance by creating a wide opening, whereby water can reach the embryo and start germination. This is the first report of the pleurogram functioning as a water gap. Because this structure is shared by at least 37 genera, it also may be a water gap in many other legume species.


Assuntos
Fabaceae/fisiologia , Dormência de Plantas , Sementes/fisiologia , Água/fisiologia
5.
PLoS One ; 13(8): e0202038, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092026

RESUMO

Under natural conditions, large seeds with physical dormancy (PY) may become water permeable earlier than small ones. However, the mechanism for this difference has not been elucidated. Thus, our aim was to evaluate the traits associated with PY in seeds of Senna multijuga (Fabaceae) and to propose a mechanism for earlier dormancy-break in large than in small seeds. Two seedlots were collected and each separated into large and small seeds. Seed dry mass, water content, thickness of palisade layer in the hilar and distal regions and the ratio between palisade layer thickness (P) in the lens fissure and seed mass (M) were evaluated. Further, the correlation between seed mass and seed dimensions was investigated. Large seeds had higher dry mass and water content than small seeds. The absolute thickness of the palisade layer in the different regions did not show any trend with seed size; however, large seeds had a lower P:M ratio than small seeds. Seed mass correlated positively with all seed dimensions, providing evidence for a substantially higher volume in large seeds. Since wet, but not dry, high temperatures break PY in sensitive seeds of S. multijuga, the data support our prediction that internal pressure potential in the seed and palisade layer thickness in the water gap (lens), which is related to seed mass (i.e. P:M ratio), act together to modulate the second step (dormancy break) of the two-stage sensitivity cycling model for PY break. In which case, large seeds are predetermined to become water-permeable earlier than small ones.


Assuntos
Germinação/fisiologia , Dormência de Plantas , Sementes/fisiologia , Microscopia Eletrônica de Varredura , Permeabilidade , Estações do Ano , Senna/fisiologia , Temperatura , Água
6.
Ann Bot ; 119(2): 267-277, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27568299

RESUMO

BACKGROUND AND AIMS: Models of costs and benefits of dormancy (D) predict that the evolutionarily stable strategy in long-term stable environments is for non-dormancy (ND), but this prediction remains to be tested empirically. We reviewed seed traits of species in the climatically buffered, geologically stable and nutrient-impoverished campo rupestre grasslands in Brazil to test the hypothesis that ND is favoured over D. We examined the relative importance of life-history traits and phylogeny in driving the evolution of D and assessed seed viability at the community level. METHODS: Germination and viability data were retrieved from 67 publications and ND/D was determined for 168 species in 25 angiosperm families. We also obtained the percentage of embryoless, viable and dormant seeds for 74 species. Frequencies of species with dormant and non-dormant seeds were compared with global databases of dormancy distribution. KEY RESULTS: The majority of campo rupestre taxa (62·5 %) had non-dormant seeds, and the ND/D ratio was the highest for any vegetation type on Earth. Dormancy was unrelated to other species life-history traits, suggesting that contemporary factors are poor predictors of D. We found a significant phylogenetic structure in the dormancy categorical trait. Dormancy diversity was highly skewed towards the root of the phylogenetic tree and there was a strong phylogenetic signal in the data, suggesting a major role of phylogeny in determining the evolution of D versus ND and seed viability. Quantitative analysis of the data revealed that at least half of the seeds produced by 46 % of the surveyed populations were embryoless and/or otherwise non-viable. CONCLUSIONS: Our results support the view that long-term climatic and geological stability favour ND. Seed viability data show that campo rupestre species have a markedly low investment in regeneration from seeds, highlighting the need for specific in situ and ex situ conservation strategies to avoid loss of biodiversity.


Assuntos
Magnoliopsida/fisiologia , Filogenia , Dormência de Plantas/fisiologia , Sementes/fisiologia , Ecologia
7.
Tree Physiol ; 35(3): 253-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25769340

RESUMO

The physiological response of plants growing in their natural habitat is strongly determined by seasonal variations in environmental conditions and the interaction of abiotic and biotic stresses. Here, leaf water and nutrient contents, changes in cellular redox state and endogenous levels of stress-related phytohormones (abscisic acid (ABA), salicylic acid and jasmonates) were examined during the rainy and dry season in Vellozia gigantea, an endemic species growing at high elevations in the rupestrian fields of the Espinhaço Range in Brazil. Enhanced stomatal closure and increased ABA levels during the dry season were associated with an efficient control of leaf water content. Moreover, reductions in 12-oxo-phytodienoic acid (OPDA) levels during the dry season were observed, while levels of other jasmonates, such as jasmonic acid and jasmonoyl-isoleucine, were not affected. Changes in ABA and OPDA levels correlated with endogenous concentrations of iron and silicon, hydrogen peroxide, and vitamin E, thus indicating complex interactions between water and nutrient contents, changes in cellular redox state and endogenous hormone concentrations. Results also suggested crosstalk between activation of mechanisms for drought stress tolerance (as mediated by ABA) and biotic stress resistance (mediated by jasmonates), in which vitamin E levels may serve as a control point. It is concluded that, aside from a tight ABA-associated regulation of stomatal closure during the dry season, crosstalk between activation of abiotic and biotic defences, and nutrient accumulation in leaves may be important modulators of plant stress responses in plants growing in their natural habitat.


Assuntos
Magnoliopsida/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estações do Ano , Estresse Fisiológico , Água/análise , Secas , Magnoliopsida/química , Magnoliopsida/fisiologia , Estômatos de Plantas/fisiologia
8.
Physiol Plant ; 153(4): 627-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25174374

RESUMO

Little is known about the control exerted by hormones in specific tissues during germination and post-germinative development in monocot seeds, whose embryos have complex structures and can remain dormant for long periods of time. Here the tissue-specific hormonal profile of macaw palm (Acrocomia aculeata) seeds overcoming dormancy and seedling during initial development was examined. Endogenous hormonal concentrations were determined in the cotyledonary petiole, haustorium, operculum, endosperm adjacent to the embryo and peripheral endosperm of dry dormant seeds, imbibed seeds trapped in phase I of germination, and germinating (phase 2 and phase 3) seeds 2, 5, 10 and 15 days after sowing. Evaluations were performed on seeds treated for overcoming dormancy by removal of the operculum and by immersion in a gibberellic acid (GA3 ) solution. Removal of the operculum effectively helped in overcoming dormancy, which was associated with the synthesis of active gibberellins (GAs) and cytokinins (CKs), as well as reductions of abscisic acid (ABA) in the cotyledonary petiole. In imbibed seeds trapped in phase I of germination, exogenous GA3 caused an increase in active GAs in the cotyledonary petiole and operculum and reduction in ABA in the operculum. Initial seedling development was associated with increases in the CK/auxin ratio in the haustorium and GA levels in the endosperm which is possibly related to the mobilization of metabolic reserves. Increases in salicylic acid (SA) and jasmonic acid (JA) concentrations were associated with the development of the vegetative axis. Hormones play a crucial tissue-specific role in the control of dormancy, germination and initial development of seedlings in macaw palm, including a central role not only for GAs and ABA, but also for CKs and other hormones.


Assuntos
Arecaceae/fisiologia , Dormência de Plantas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Sementes/fisiologia , Ácido Abscísico/metabolismo , Cotilédone/fisiologia , Citocininas/metabolismo , Endosperma/fisiologia , Germinação , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Plântula/fisiologia
9.
Planta ; 240(2): 437-46, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24929975

RESUMO

Vitamin E occurs in all photosynthetic organisms examined to date. Tocopherols predominate in photosynthetic tissues (α-tocopherol being the major form), while either tocopherols or tocotrienols (or both) are present in seeds. Tocotrienols have not been described in photosynthetic tissues thus far. Here, we report on the presence of tocotrienols in leaves of higher plants. Both tocopherols and tocotrienols accumulated in leaves of Vellozia gigantea, an endemic plant found in the rupestrian fields of Serra do Cipó, Brazil. Increased plant size had a remarkable effect on the vitamin E composition of leaves, α-tocopherol and ß-tocotrienol levels being highest in the largest individuals, but only during the dry season. Vitamin E levels positively correlated with lipid hydroxyperoxide levels, which also increased in the largest individuals during the dry season. However, the maximum efficiency of PSII photochemistry (F v/F m ratio) kept above 0.75 throughout the experiment, thus indicating absence of photoinhibitory damage to the photosynthetic apparatus. It is concluded that higher plants, such as V. gigantea, can accumulate tocotrienols in leaves, aside from tocopherols, and that the levels of both tocopherols and tocotrienols in the leaves of this species are strongly modulated by seasonal and plant size effects.


Assuntos
Magnoliopsida/metabolismo , Folhas de Planta/metabolismo , Tocotrienóis/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...