Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 32(45): 11946-11957, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27794618

RESUMO

The relationship between the structure of sequence-defined peptoid polymers and their ability to assemble into well-defined nanostructures is important to the creation of new bioinspired platforms with sophisticated functionality. Here, the hydrophobic N-(2-phenylethyl)glycine (Npe) monomers of the standard nanosheet-forming peptoid sequence were modified in an effort to (1) produce nanosheets from relatively short peptoids, (2) inhibit the aggregation of peptoids in bulk solution, (3) increase nanosheet stability by promoting packing interactions within the hydrophobic core, and (4) produce nanosheets with a nonaromatic hydrophobic core. Fluorescence and optical microscopy of individual nanosheets reveal that certain modifications to the hydrophobic core were well tolerated, whereas others resulted in instability or aggregation or prevented assembly. Importantly, we demonstrate that substitution at the meta and para positions of the Npe aromatic ring are well tolerated, enabling significant opportunities to tune the functional properties of peptoid nanosheets. We also found that N-aryl glycine monomers inhibit nanosheet formation, whereas branched aliphatic monomers have the ability to form nanosheets. An analysis of the crystal structures of several N,N'-disubstituted diketopiperazines (DKPs), a simple model system, revealed that the preferred solid-state packing arrangement of the hydrophobic groups can directly inform the assembly of stable peptoid nanosheets.

2.
Proc Natl Acad Sci U S A ; 111(44): E4789-96, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25331865

RESUMO

Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX-fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling.


Assuntos
Proteínas de Artrópodes/farmacologia , Dendrímeros/farmacologia , Corantes Fluorescentes/farmacologia , Canais de Potássio Shab/metabolismo , Transdução de Sinais/efeitos dos fármacos , Venenos de Aranha/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Ativação do Canal Iônico , Ligação Proteica , Canais de Potássio Shab/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...