Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984472

RESUMO

The effect of nuclear vibrations on the electronic eigenvalues and the HOMO-LUMO gap is known for several kinds of carbon-based materials, like diamond, diamondoids, carbon nanoclusters, carbon nanotubes and others, like hydrogen-terminated oligoynes and polyyne. However, it has not been widely analysed in another remarkable kind which presents both theoretical and technological interest: fullerenes. In this article we present the study of the HOMO, LUMO and gap renormalizations due to zero-point motion of a relatively large number (163) of fullerenes and fullerene derivatives. We have calculated this renormalization using density-functional theory with the frozen-phonon method, finding that it is non-negligible (above 0.1 eV) for systems with relevant technological applications in photovoltaics and that the strength of the renormalization increases with the size of the gap. In addition, we have applied machine learning methods for classification and regression of the renormalizations, finding that they can be approximately predicted using the output of a computationally cheap ground state calculation. Our conclusions are supported by recent research in other systems.

2.
Inorg Chem ; 63(29): 13231-13243, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38984802

RESUMO

The pressure dependence of structural, optical, and magnetic properties of the layered compound CsMnF4 are explored through first-principles calculations. The structure at ambient pressure does not arise from a Jahn-Teller effect but from an orthorhombic instability on MnF63- units in the tetragonal parent phase, while there is a P4/n → P4 structural phase transition at P = 40 GPa discarding a spin crossover transition from S = 2 to S = 1. The present results reasonably explain the evolution of spin-allowed d-d transitions under pressure, showing that the first transition undergoes a red-shift under pressure following the orthorhombic distortion in the layer plane. The energy of such a transition at zero pressure is nearly twice that observed in Na3MnF6 due to the internal electric field and the orthorhombic distortion also involved in K2CuF4. The reasons for the lack of orthorhombic distortion in K2MF4 (M = Ni, Mn) or CsFeF4 are also discussed in detail. The present calculations confirm the ferromagnetic ordering of layers in CsMnF4 at zero pressure and predict a shift to an antiferromagnetic phase for pressures above 15 GPa consistent with the reduction of the orthorhombicity of the MnF63- units. This study underlines the usefulness of first-principles calculations for a right interpretation of experimental findings.

3.
J Phys Chem Lett ; 15(25): 6476-6481, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38869224

RESUMO

Spatial degeneracy is the cause of the complex electronic, geometrical, and magnetic structures found in a number of materials whose more representative example is KCuF3. In the literature the properties of this lattice are usually explained through the Kugel--Khomskii model, based on superexchange interactions. Here we provide rigorous theoretical and computational arguments against this view proving that structural and magnetic properties essentially arise from electron-vibration (vibronic) interactions. Moreover, based on the work of Öpik and Pryce, we show that the coupling between lattice (homogeneous strain) and motif (phonons) distortions is essential to understand the main stable configurations of the lattice. Using this information, we predict a new low-energy phase in KCuF3 that could strongly alter its properties and provide guidance on how to stabilize it through strain engineering.

4.
Chem Mater ; 36(8): 3977, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38681085

RESUMO

[This corrects the article DOI: 10.1021/acs.chemmater.2c03784.].

5.
ChemSusChem ; 17(5): e202301224, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37917571

RESUMO

Potassium manganese hexacianoferrate has been prepared by co-precipitation from manganese (II) chloride and potassium citrate, with chemical analysis yielding the formula K1.72 Mn[Fe(CN)6 ]0.92 □0.08 ⋅ 1.1H2 O (KMnHCF). Its X-ray diffraction pattern is consistent with a monoclinic structure (space group P 21 /n, no. 14) with cell parameters a=10.1202(6)Å, b=7.2890(5)Å, c=7.0193(4)Å, and ß=89.90(1)°. Its redox behavior has been studied in magnesium containing electrolytes. Both K+ ions deintercalated from the structure upon oxidation and contamination with Na+ ions coming from the separator were found to interfere in the electrochemical response. In the absence of alkaline ions, pre-oxidized manganese hexacianoferrate showed reversible magnesium intercalation, and the process has been studied by operando synchrotron X-ray diffraction. The location of Mg2+ ions in the crystal structure was not possible with the available experimental data. Still, density functional theory simulations indicated that the most favorable position for Mg2+ intercalation is at 32f sites (considering a pseudo cubic F m-3m phase), which are located between 8c and Mn sites.

6.
ChemSusChem ; 16(12): e202300256, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36916507

RESUMO

Gel polymer electrolytes composed of deep eutectic solvent acetamide4 :Zn(TFSI)2 and poly(ethylene oxide) (PEO) are prepared by using a fast, solvent-free procedure. The effect of the PEO molecular weight and its concentration on the physicochemical and electrochemical properties of the electrolytes are studied. Gels prepared with ultrahigh molecular-weight PEO present pseudo-solid behavior and ionic conductivity even higher than that of the original liquid electrolyte. A decrease in the dendritic growth in soft gels with PEO contents up to 1 wt % is demonstrated. The changes in the chemical structure of the electrolyte produced by the strong interactions between ethylene oxide units and Zn2+ have also been studied. The addition of PEO takes the electrolyte out of its original eutectic composition, producing blend crystallization. However, it is possible to retain the eutectic point of the electrolyte in a gel form if the addition of PEO is accompanied by the reduction of acetamide.


Assuntos
Solventes Eutéticos Profundos , Polímeros , Polímeros/química , Óxido de Etileno , Eletrólitos/química , Géis , Zinco
7.
Chemistry ; 29(5): e202202933, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36322429

RESUMO

The red shift under pressure in optical transitions of layered compounds with CuCl6 4- units is explored through first-principles calculations and the analysis of available experimental data. The results on Cu2+ -doped (C2 H5 NH3 )2 CdCl4 , that is taken as a guide, show the existence of a highly anisotropic response to pressure related to a structural instability, driven by a negative force constant, that leads to an orthorhombic geometry of CuCl6 4- units but with a hole displaying a dominant 3z2 -r2 character (z being the direction perpendicular to the layer plane). As a result of such an instability, a pressure of only 3 GPa reduces by 0.21 Šthe longest Cu2+ -Cl- distance, lying in the layer plane, while leaving unmodified the two other metal-ligand distances. Owing to this fact, it is shown that the lowest d-d transition would experience a red shift of 0.34 eV while the first allowed charge transfer transition is also found to be red shifted but only by 0.11 eV that reasonably concurs with the experimental value. The parallel study on Jahn-Teller systems CdCl2 :Cu2+ and NaCl:Cu2+ involving tetragonal elongated CuCl6 4- units shows that the reduction of the long axis by a pressure of 3 GPa is three times smaller than that for the layered (C2 H5 NH3 )2 CdCl4 :Cu2+ compound. Accordingly, the optical transitions of such systems, which involve a positive force constant, are much less sensitive to pressure than in layered compounds. The origin of the red shift under pressure undergone by the lowest d-d and charge transfer transitions of (C2 H5 NH3 )2 CdCl4 :Cu2+ is discussed in detail.


Assuntos
Cobre , Óxidos , Cobre/química
8.
ChemSusChem ; 14(21): 4820-4835, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34459116

RESUMO

The performance of rechargeable magnesium batteries is strongly dependent on the choice of electrolyte. The desolvation of multivalent cations usually goes along with high energy barriers, which can have a crucial impact on the plating reaction. This can lead to significantly higher overpotentials for magnesium deposition compared to magnesium dissolution. In this work we combine experimental measurements with DFT calculations and continuum modelling to analyze Mg deposition in various solvents. Jointly, these methods provide a better understanding of the electrode reactions and especially the magnesium deposition mechanism. Thereby, a kinetic model for electrochemical reactions at metal electrodes is developed, which explicitly couples desolvation to electron transfer and, furthermore, qualitatively takes into account effects of the electrochemical double layer. The influence of different solvents on the battery performance is studied for the state-of-the-art magnesium tetrakis(hexafluoroisopropyloxy)borate electrolyte salt. It becomes apparent that not necessarily a whole solvent molecule must be stripped from the solvated magnesium cation before the first reduction step can take place. For Mg reduction it seems to be sufficient to have one coordination site available, so that the magnesium cation is able to get closer to the electrode surface. Thereby, the initial desolvation of the magnesium cation determines the deposition reaction for mono-, tri- and tetraglyme, whereas the influence of the desolvation on the plating reaction is minor for diglyme and tetrahydrofuran. Overall, we can give a clear recommendation for diglyme to be applied as solvent in magnesium electrolytes.

9.
ChemSusChem ; 14(9): 1973, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33852198

RESUMO

Invited for this month's cover is the Section for Atomic Scale Materials Modelling led by Prof. Tejs Vegge at the Department of Energy Conversion and Storage, Technical University of Denmark. The central image of the cover picture illustrates one of the chemical reaction mechanisms observed in a deep eutectic electrolyte formed by AlCl3 and urea. This is a promising electrolyte for inexpensive and environmentally friendly next-generation batteries based on aluminum. We have developed the computational techniques needed to identify chemical species and track reaction mechanisms across an ab initio molecular dynamics trajectory. The reaction mechanisms and speciation observed help to gain more insight in the development of such batteries. The Full Paper itself is available at 10.1002/cssc.202100163.

10.
ChemSusChem ; 14(9): 2034-2041, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33682346

RESUMO

Deep eutectic solvents (DESs) have emerged as an alternative for conventional ionic liquids in aluminum batteries. Elucidating DESs composition is fundamental to understand aluminum electrodeposition in the battery anode. Despite numerous experimental efforts, the speciation of these DESs remains elusive. This work shows how ab initio molecular dynamics (AIMD) simulations can shed light on the molecular composition of DESs. For the particular example of AlCl3 :urea, one of the most popular DESs, we carried out a systematic AIMD study, showing how an excess of AlCl3 in the AlCl3 :urea mixture promotes the stability of ionic species vs neutral ones and also favors the reactivity in the system. These two facts explain the experimentally observed enhanced electrochemical activity in salt-rich DESs. We also observe the transfer of simple [AlClx (urea)y ] clusters between different species in the liquid, giving rise to free [AlCl4 ]- units. The small size of these [AlCl4 ]- units favors the transport of ionic species towards the anode, facilitating the electrodeposition of aluminum.

11.
ChemSusChem ; 13(20): 5523-5530, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32813325

RESUMO

It is possible to prepare elastic and thermoreversible gel electrolytes with significant electroactivity by dissolving minimal weight fractions of ultra-high molecular weight polyethylene oxide (UHMW PEO) in an aluminum deep eutectic solvent (DES) electrolyte composed of AlCl3 and urea at a molar ratio of 1.5 : 1 (AlCl3 /urea). The experimental vibrational spectra (FTIR and Raman) provide valuable information on the structure and composition of the gel electrolyte. However, the complexity of this system requires computational simulations to help interpretation of the experimental results. This combined approach allows us to elucidate the speciation of the DES liquid electrolyte in the gel and how it interacts with the polymer chains to give rise to an elastic network that retains the electroactivity of the liquid electrolyte to a very great extent. The observed reactions occur between the ether in the polymer and both the amine groups in urea and the aluminum species. Thus, similar elastomeric gels may likely be prepared with other aluminum liquid electrolytes, making this procedure an effective way to produce families of gel aluminum electrolytes with tunable rheology and electroactivity.

12.
Phys Chem Chem Phys ; 22(24): 13378-13389, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32391539

RESUMO

The orientation of diatomic molecular impurities in crystals is a classic problem in physics, whose analysis started in the early 1930s with Pauling's pioneering studies and has extended to the present day. In the present work, we investigate the orientation of a superoxide ion (O2-), which is known to be oriented in the 1 1 0 direction when replacing a halide ion in alkali halide rock salt lattices. The unpaired electron of the superoxide, whose ground state is degenerate (2Πg), is oriented in the 0 0 1 direction for sodium halides while it is oriented in the 1 1[combining macron] 0 direction for potassium and rubidium halides. We performed density functional theory (DFT) calculations to describe the full adiabatic potential energy surface (APES) of this complex system for the first time with ab initio methods. We are focused on four alkali halide lattices, namely NaCl, NaBr, KCl, and KBr. We show that DFT, at the generalized gradient approximation (GGA) and meta-GGA levels, is able to reproduce all the experimental features for potassium halides. However, for sodium halides, although the DFT predicts the correct unpaired electron orientation, the forecasted APES energy minimum for the molecular orientation is found to be close to the 1 1 3/4 orientation, in contrast to the experimental 1 1 0 orientation. The difference in energy between the 1 1 3/4 and 1 1 0 orientation is less than 10 meV, which points out the subtleness of the considered problem. In addition to assessing the DFT accuracy and limitations to treat these systems, we also paid special attention to analyze the geometry distortions of the host lattice for the high symmetry orientations of the superoxide ion, i.e., 1 0 0, 1 1 0 and 1 1 1. In the case of the 1 1 0 molecular orientation, we find a strong dependence on the distance between the alkali ions in the 0 0 1 direction and the superoxide ion upon the unpaired electron orientation. This fact explains why the orientation of the unpaired electron is different in sodium vs. potassium halides. In the case of the 1 0 0 and 1 1 1 molecular orientations, we analyze the Jahn-Teller vibronic coupling to find an unusually large vibronic centrifugal term in the latter.

13.
Phys Chem Chem Phys ; 22(25): 14376, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32458892

RESUMO

Correction for 'Density functional theory study of superoxide ions as impurities in alkali halides' by Alexander S. Tygesen et al., Phys. Chem. Chem. Phys., 2020, DOI: 10.1039/d0cp00719f.

14.
ChemSusChem ; 13(14): 3599-3604, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32462774

RESUMO

The choice of electrolyte has a crucial influence on the performance of rechargeable magnesium batteries. In multivalent electrolytes an agglomeration of ions to pairs or bigger clusters may affect the transport in the electrolyte and the reaction at the electrodes. In this work the formation of clusters is included in a general model for magnesium batteries. In this model, the effect of cluster formation on transport, thermodynamics and kinetics is consistently taken into account. The model is used to analyze the effect of ion clustering in magnesium tetrakis(hexafluoroisopropyloxy)borate in dimethoxyethane as electrolyte. It becomes apparent that ion agglomeration is able to explain experimentally observed phenomena at high salt concentrations.

15.
J Chem Phys ; 152(7): 074711, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087628

RESUMO

Metal-air batteries have higher theoretical specific energies than existing rechargeable batteries including Li-ion batteries. Among metal-air batteries, the Na-O2 battery has gained much attention due to its low discharge/charge overpotentials (∼100 mV) at relatively high current densities (0.2 mA/cm2), high electrical energy efficiency (90%), high theoretical energy density, and low cost. However, there is no information reported regarding the effect of CO2 contamination in non-aqueous Na-air batteries. Density functional theory has, here, been applied to study the effect of low concentrations of CO2 contamination on NaO2 and Na2O2 growth/depletion reaction pathways and overpotentials. This was done on step surfaces of discharge products in non-aqueous Na-air batteries. Adsorption energies of CO2 at various nucleation sites for both step surfaces were determined, and results revealed that CO2 preferentially binds at the step valley sites of (001) NaO2 and 11¯00 Na2O2 surfaces with binding energies of -0.65 eV and -2.67 eV, respectively. CO2 blocks the step nucleation site and influences the reaction pathways and overpotentials due to carbonate formation. The discharge electrochemical overpotential increases remarkably from 0.14 V to 0.30 V and from 0.69 V to 1.26 V for NaO2 and Na2O2 surfaces, respectively. CO2 contamination is thus drastically impeding the growth/depletion mechanism pathways and increases the overpotentials of the surface reaction mechanism, hampering the performance of the battery. Avoiding CO2 contamination from intake of gas and electrolyte decomposition is thus critical in development of Na-air batteries.

16.
J Phys Condens Matter ; 31(32): 325901, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31013487

RESUMO

Materials exhibiting a substitutional disorder such as multicomponent alloys and mixed metal oxides/oxyfluorides are of great importance in many scientific and technological sectors. Disordered materials constitute an overwhelmingly large configurational space, which makes it practically impossible to be explored manually using first-principles calculations such as density functional theory due to the high computational costs. Consequently, the use of methods such as cluster expansion (CE) is vital in enhancing our understanding of the disordered materials. CE dramatically reduces the computational cost by mapping the first-principles calculation results on to a Hamiltonian which is much faster to evaluate. In this work, we present our implementation of the CE method, which is integrated as a part of the atomic simulation environment (ASE) open-source package. The versatile and user-friendly code automates the complex set up and construction procedure of CE while giving the users the flexibility to tweak the settings and to import their own structures and previous calculation results. Recent advancements such as regularization techniques from machine learning are implemented in the developed code. The code allows the users to construct CE on any bulk lattice structure, which makes it useful for a wide range of applications involving complex materials. We demonstrate the capabilities of our implementation by analyzing the two example materials with varying complexities: a binary metal alloy and a disordered lithium chromium oxyfluoride.

17.
J Chem Theory Comput ; 15(5): 3215-3222, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30892887

RESUMO

Many activated processes in materials science, physics, and chemistry, e.g. diffusion processes, have initial and final states related by symmetry. Identification of minimum energy paths in such systems with methods such as nudged elastic band (NEB) can gain substantial speed up if the symmetry is exploited. The identification of minimum energy paths and transition states for such processes constitute a large fraction of the CPU-usage within computational materials science; much of which is in essence redundant due to symmetry. Paths with a reflection symmetry can be calculated using about half the computational resources, and the activation energy can, for some transitions, be estimated with high precision with a speed up factor equal to the number of images used in a standard NEB calculation. We present the formal properties required for a system to guarantee a reflection symmetric minimum energy path and an implementation to prepare and effectively speed up nudged elastic band calculations through symmetry considerations. Five examples are given to show the versatility and effectiveness of the method and to validate the implementation. The method is implemented in the open source package Atomic Simulation Environment (ASE) and contains internal methods to identify symmetry relations between the given end point configurations.

18.
J Chem Phys ; 148(24): 241735, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960358

RESUMO

Polymer solar cells admit numerous potential advantages including low energy payback time and scalable high-speed manufacturing, but the power conversion efficiency is currently lower than for their inorganic counterparts. In a Phenyl-C_61-Butyric-Acid-Methyl-Ester (PCBM)-based blended polymer solar cell, the optical gap of the polymer and the energetic alignment of the lowest unoccupied molecular orbital (LUMO) of the polymer and the PCBM are crucial for the device efficiency. Searching for new and better materials for polymer solar cells is a computationally costly affair using density functional theory (DFT) calculations. In this work, we propose a screening procedure using a simple string representation for a promising class of donor-acceptor polymers in conjunction with a grammar variational autoencoder. The model is trained on a dataset of 3989 monomers obtained from DFT calculations and is able to predict LUMO and the lowest optical transition energy for unseen molecules with mean absolute errors of 43 and 74 meV, respectively, without knowledge of the atomic positions. We demonstrate the merit of the model for generating new molecules with the desired LUMO and optical gap energies which increases the chance of finding suitable polymers by more than a factor of five in comparison to the randomised search used in gathering the training set.

19.
ChemSusChem ; 11(12): 1933-1941, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29601151

RESUMO

Zinc-air batteries offer the potential of low-cost energy storage with high specific energy, but at present secondary Zn-air batteries suffer from poor cyclability. To develop economically viable secondary Zn-air batteries, several properties need to be improved: choking of the cathode, catalyzing the oxygen evolution and reduction reactions, limiting dendrite formation and suppressing the hydrogen evolution reaction (HER). Understanding and alleviating HER at the negative electrode in a secondary Zn-air battery is a substantial challenge, for which it is necessary to combine computational and experimental research. Here, we combine differential electrochemical mass spectrometry (DEMS) and density functional theory (DFT) calculations to investigate the fundamental role and stability when cycling in the presence of selected beneficial additives, that is, In and Bi, and Ag as a potentially unfavorable additive. We show that both In and Bi have the desired property for a secondary battery, that is, upon recharging they will remain on the surface, thereby retaining the beneficial effects on Zn dissolution and suppression of HER. This is confirmed by DEMS, where it is observed that In reduces HER and Bi affects the discharge potential beneficially compared to a battery without additives. Using a simple procedure based on adsorption energies calculated with DFT, it is found that Ag suppresses OH adsorption, but, unlike In and Bi, it does not hinder HER. Finally, it is shown that mixing In and Bi is beneficial compared to the additives by themselves as it improves the electrochemical performance and cyclic stability of the secondary Zn-air battery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...