Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 164: 105249, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33477023

RESUMO

Microplastics are widespread in the marine environment, whereby the uptake of these tiny particles by organisms, can cause adverse biological responses. Plastic debris also act as a vector of many contaminants, herein depending on type, size, shape and chemical properties, possibly intensifying their effects on marine organisms. This study aimed to assess the accumulation and potential toxicity of different sizes of microplastics with and without adsorbed perfluorooctane sulfonic acid (PFOS) in the clam Scrobicularia plana. Clams were exposed to low-density polyethylene microplastics (1 mg L-1) of two different sizes (4-6 and 20-25 µm) virgin and contaminated with PFOS (55.7 ± 5.3 and 46.1 ± 2.9 µg g-1 respectively) over 14 days. Microplastic ingestion, PFOS accumulation and filtration rate were determined along with a multi biomarker approach to assess the biological effects of microplastics ingestion. Biomarkers include oxidative stress (superoxide dismutase, catalase, glutathione peroxidases), biotransformation enzymes (glutathione-S-transferases activity), neurotoxicity (acetylcholinesterase activity), oxidative damage and apoptosis. Microplastics ingestion and PFOS accumulation was microplastic size dependent but not PFOS dependent and filtration rate was reduced at the end of the exposure. Reactive oxygen species in gills and digestive gland were generated as a result of exposure to both types of microplastics, confirming the disturbance of the antioxidant system. Larger virgin microparticles lead to stronger impacts, when compared to smaller ones which was also supported by the Integrated Biomarker Responses index calculated for both tissues. An anti-apoptotic response was detected in digestive glands under exposure to any of the MPs treatments.


Assuntos
Bivalves , Poluentes Químicos da Água , Ácidos Alcanossulfônicos , Animais , Fluorocarbonos , Microplásticos , Plásticos/toxicidade , Polietileno/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Mar Environ Res ; 119: 12-21, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27183200

RESUMO

Antineoplastic drugs used in chemotherapy were detected in aquatic environment: despite the very low concentrations (ng L(-1) to ug L(-1)), due to their potent mechanism of action they could have adverse effects on non-target aquatic organisms particularly under chronic exposure. Cisplatin (CDDP) is one of the most effective anticancer drug currently in use but information on its ecotoxicological effects is very limited. In this study, Mytilus galloprovincialis was used to investigate the toxic effects related to CDDP exposure. Mussels were exposed to cisplatin (100 ng L(-1)) for 14 days: antioxidant (superoxide dismutase, catalase, total and selenium-dependent glutathione peroxidase) and phase II (glutathione-S-transferase) enzymes activities, oxidative damage (lipid peroxidation), genotoxicity (DNA damage) and neurotoxicity (acetylcholinesterase) was evaluated. Results indicate that CDDP at tested concentration induce changes in the antioxidant capacity, oxidative stress in target organs (digestive gland and gills) as well as DNA damage in mussel hemocytes and neurotoxicity representing a risk for non-target organisms.


Assuntos
Cisplatino/toxicidade , Citostáticos/toxicidade , Mytilus/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...